Immunosenescence and Cutaneous Malignancies

Chapter

Abstract

The increased incidence of skin malignancies in the elderly can be attributed to a myriad of environmental and genetic factors. Among these are the not fully understood cellular and molecular changes of immunosenescence. Understanding how the immune system is dysregulated in advanced age, as well as how it interfaces with the multifaceted roles of the immune system in carcinogenesis and neoplastic control, will aid in developing effective immune strategies and improved therapeutic interventions for skin malignancies in the aging population.

Keywords

Skin Cutaneous Malignancies Elderly Immunosenescence 

References

  1. 1.
    Stern RS. Prevalence of a history of skin cancer in 2007: results of an incidence-based model. Arch Dermatol. 2010;146:279–82.PubMedCrossRefGoogle Scholar
  2. 2.
    American Cancer Society. Cancer Facts & Figures 2018. Atlanta: American Cancer Society; 2018.Google Scholar
  3. 3.
    Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P, et al. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 2005;41:45–60.PubMedCrossRefGoogle Scholar
  4. 4.
    DePinho RA. The age of cancer. Nature. 2000;408:248–54.PubMedCrossRefGoogle Scholar
  5. 5.
    Caruso C, Lio D, Cavallone L, Franceschi C. Aging, longevity, inflammation, and cancer. Ann NY Acad Sci. 2004;1028:1–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Scotto J, Fears TR, Fraumeni JF. Incidence of nonmelanoma skin cancer in the United States. Bethesda, MD: US Department of Health and Human Services Washington; 1983. p. 113.Google Scholar
  7. 7.
    Little EG, Eide MJ. Update on the current state of melanoma incidence. Dermatol Clin. 2012;30:355–61.PubMedCrossRefGoogle Scholar
  8. 8.
    Jemal A, Saraiya M, Patel P, Cherala SS, Barnholtz-Sloan J, Kim J, et al. Recent trends in cutaneous melanoma incidence and death rates in the United States, 1992–2006. J Am Acad Dermatol. 2011;65:S17–25.e1–3.PubMedCrossRefGoogle Scholar
  9. 9.
    Albores-Saavedra J, Batich K, Chable-Montero F, Sagy N, Schwartz AM, Henson DE. Merkel cell carcinoma demographics, morphology, and survival based on 3870 cases: a population based study. J Cutan Pathol. 2010;37:20–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Boshoff C, Weiss RA. Epidemiology and pathogenesis of Kaposi’s sarcoma-associated herpesvirus. Philos Trans R Soc Lond Ser B Biol Sci. 2001;356:517–34.CrossRefGoogle Scholar
  11. 11.
    Schwartz RA, Micali G, Nasca MR, Scuderi L. Kaposi sarcoma: a continuing conundrum. J Am Acad Dermatol. 2008;59:179–206.PubMedCrossRefGoogle Scholar
  12. 12.
    Bishop JM. Molecular themes in oncogenesis. Cell. 1991;64:235–48.PubMedCrossRefGoogle Scholar
  13. 13.
    Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194:23–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Armitage P, Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer. 1954;8:1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Renan MJ. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog. 1993;7:139–46.PubMedCrossRefGoogle Scholar
  17. 17.
    Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.PubMedCrossRefGoogle Scholar
  18. 18.
    Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 1991;51:3075–9.PubMedGoogle Scholar
  19. 19.
    Goukassian D, Gad F, Yaar M, Eller MS, Nehal US, Gilchrest BA. Mechanisms and implications of the age-associated decrease in DNA repair capacity. FASEB J. 2000;14:1325–34.PubMedCrossRefGoogle Scholar
  20. 20.
    Ramsey MJ, Moore DH II, Briner JF, Lee DA, Olsen L, Senft JR, et al. The effects of age and lifestyle factors on the accumulation of cytogenetic damage as measured by chromosome painting. Mutat Res. 1995;338:95–106.PubMedCrossRefGoogle Scholar
  21. 21.
    Malaguarnera G, Giordano M, Cappellani A, Berretta M, Malaguarnera M, Perrotta RE. Skin cancers in elderly patients. Anti Cancer Agents Med Chem. 2013;13:1406–11.CrossRefGoogle Scholar
  22. 22.
    Kolodner RD, Tytell JD, Schmeits JL, Kane MF, Gupta RD, Weger J, et al. Germ-line msh6 mutations in colorectal cancer families. Cancer Res. 1999;59:5068–74.PubMedGoogle Scholar
  23. 23.
    Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000;16:168–74.PubMedCrossRefGoogle Scholar
  24. 24.
    Issa JP. Aging and epigenetic drift: a vicious cycle. J Clin Investig. 2014;124:24–9.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990;346:866–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A. 1992;89:10114–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci U S A. 2003;100(Suppl 1):11830–5.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992;11:1921–9.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature. 2000;406:641–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 2015;13:45.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Pelengaris S, Littlewood T, Khan M, Elia G, Evan G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell. 1999;3:565–77.PubMedCrossRefGoogle Scholar
  32. 32.
    Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, et al. Essential role for oncogenic Ras in tumour maintenance. Nature. 1999;400:468–72.PubMedCrossRefGoogle Scholar
  33. 33.
    Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92:9363–7.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Campisi J. Aging and cancer: the double-edged sword of replicative senescence. J Am Geriatr Soc. 1997;45:482–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Shelton DN, Chang E, Whittier PS, Choi D, Funk WD. Microarray analysis of replicative senescence. Curr Biol. 1999;9:939–45.PubMedCrossRefGoogle Scholar
  36. 36.
    Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103:481–90.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2:737–44.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Pawelec G, Derhovanessian E, Larbi A. Immunosenescence and cancer. Crit Rev Oncol Hematol. 2010;75:165–72.PubMedCrossRefGoogle Scholar
  39. 39.
    Gelman R, Watson A, Bronson R, Yunis E. Murine chromosomal regions correlated with longevity. Genetics. 1988;118:693–704.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Agarwal S, Busse PJ. Innate and adaptive immunosenescence. Ann Allergy Asthma Immunol. 2010;104:183–90.PubMedCrossRefGoogle Scholar
  41. 41.
    Gavazzi G, Krause K-H. Ageing and infection. Lancet Infect Dis. 2002;2:659–66.PubMedCrossRefGoogle Scholar
  42. 42.
    Sunderkotter C, Kalden H, Luger TA. Aging and the skin immune system. Arch Dermatol. 1997;133:1256–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Aspinall R. Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. J Immunol. 1997;158:3037–45.PubMedGoogle Scholar
  44. 44.
    Flores KG, Li J, Sempowski GD, Haynes BF, Hale LP. Analysis of the human thymic perivascular space during aging. J Clin Investig. 1999;104:1031–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Naylor K, Li G, Vallelo AN, Lee WW, Koetz K, Bryl E, et al. The influence of age on T cell generation and TCR diversity. J Immunol. 2005;174:7446–52.PubMedCrossRefGoogle Scholar
  46. 46.
    Andrew D, Aspinall R. Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp Gerontol. 2002;37:455–63.PubMedCrossRefGoogle Scholar
  47. 47.
    Aggarwal S, Gupta S. Increased apoptosis of T cell subsets in aging humans: altered expression of Fas (CD95), Fas ligand, Bcl-2, and Bax. J Immunol. 1998;160:1627–37.PubMedGoogle Scholar
  48. 48.
    Kaszubowska L. Telomere shortening and ageing of the immune system. J Physiol Pharmacol. 2008;59:169–86.PubMedGoogle Scholar
  49. 49.
    Yang Y, An J, Weng NP. Telomerase is involved in IL-7-mediated differential survival of naive and memory CD4+ T cells. J Immunol. 2008;180:3775–81.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol. 2002;169:1984–92.PubMedCrossRefGoogle Scholar
  51. 51.
    McElhaney JE, Effros RB. Immunosenescence: what does it mean to health outcomes in older adults? Curr Opin Immunol. 2009;21:418–24.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Haynes L, Linton PJ, Eaton SM, Tonkonogy SL, Swain SL. Interleukin 2, but not other common γ chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naive T cells of aged mice. J Exp Med. 1999;190:1013–23.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL. CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc Natl Acad Sci U S A. 2003;100:15053–8.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL. Newly generated CD4 T cells in aged animals do not exhibit age-related defects in response to antigen. J Exp Med. 2005;201:845–51.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Eaton SM, Burns EM, Kusser K, Randall TD, Haynes L. Age-related defects in CD4 T cell cognate helper function lead to reductions in humoral responses. J Exp Med. 2004;200:1613–22.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kovaiou RD, Grubeck-Loebenstein B. Age-associated changes within CD4+ T cells. Immunol Lett. 2006;107:8–14.PubMedCrossRefGoogle Scholar
  57. 57.
    Engwerda CR, Fox BS, Handwerger BS. Cytokine production by T lymphocytes from young and aged mice. J Immunol. 1996;156:3621–30.PubMedGoogle Scholar
  58. 58.
    Fulop T, Larbi A, Wikby A, Mocchegiani E, Hirokawa K, Pawelec G. Dysregulation of T cell function in the elderly: scientific basis and clinical implications. Drugs Aging. 2005;22:589–603.Google Scholar
  59. 59.
    Larbi A, Douziech N, Dupuis G, Khalil A, Pelletier H, Guerard KP, et al. Age-associated alterations in the recruitment of signal-transduction proteins to lipid rafts in human T lymphocytes. J Leukoc Biol. 2004;75:373–81.PubMedCrossRefGoogle Scholar
  60. 60.
    Powers DC. Influenza A virus-specific cytotoxic T lymphocyte activity declines with advancing age. J Am Geriatr Soc. 1993;41:1–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Effros RB, Walford RL. The immune response of aged mice to influenza: diminished T cell proliferation, interleukin 2 production and cytotoxicity. Cell Immunol. 1983;81:298–305.Google Scholar
  62. 62.
    Po JL, Gardner EM, Anaraki F, Katsikis PD, Murasko DM. Age-associated decrease in virus-specific CD8+ T lymphocytes during primary influenza infection. Mech Ageing Dev. 2002;123:1167–81.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhao L, Sun L, Wang H, Haixia M, Liu G, Zhao Y. Changes of CD4+CD25+Foxp3+ regulatory T cells in aged Balb/c mice. J Leukoc Biol. 2007;81:1386–94.PubMedCrossRefGoogle Scholar
  64. 64.
    Gregg R, Smith CM, Clark FJ, Dunnion D, Khan N, Chakraverty R, et al. The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age. Clin Exp Immunol. 2005;140:540–6.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Castle SC, Norman DC, Perls TT, Chang MP, Yoshikawa TT, Makinodan T. Analysis of cutaneous delayed-type hypersensitivity reaction and T cell proliferative response in elderly nursing home patients: an approach to identifying immunodeficient patients. Gerontology. 1990;36:217–29.PubMedCrossRefGoogle Scholar
  66. 66.
    Frasca D, Nguyen D, Riley RL, Blomberg BB. Decreased E12 and/or E47 transcription factor activity in the bone marrow as well as in the spleen of aged mice. J Immunol. 2003;170:719–26.PubMedCrossRefGoogle Scholar
  67. 67.
    Labrie Iii JE, Sah AP, Allman DM, Cancro MP, Gerstein RM. Bone marrow microenvironmental changes underlie reduced RAG-mediated recombination and B cell generation in aged mice. J Exp Med. 2004;200:411–23.CrossRefGoogle Scholar
  68. 68.
    Siegrist CA, Aspinall R. B cell responses to vaccination at the extremes of age. Nat Rev Immunol. 2009;9:185–94.Google Scholar
  69. 69.
    Sato H. The distribution, immune complex trapping ability and morphology of follicular dendritic cells in popliteal lymph nodes of aged rats. Histol Histopathol. 1998;13:99–108.PubMedGoogle Scholar
  70. 70.
    Weksler ME, Szabo P. The effect of age on the B cell repertoire. J Clin Immunol. 2000;20:240–9.Google Scholar
  71. 71.
    Yang X, Stedra J, Cerny J. Relative contribution of T and B cells to hypermutation and selection of the antibody repertoire in germinal centers of aged mice. J Exp Med. 1996;183:959–70.PubMedCrossRefGoogle Scholar
  72. 72.
    Miller RA. The aging immune system: primer and prospectus. Science. 1996;273:70–4.PubMedCrossRefGoogle Scholar
  73. 73.
    Whisler RL, Williams Jr JW, Newhouse YG. Human B cell proliferative responses during aging. Reduced RNA synthesis and DNA replication after signal transduction by surface immunoglobulins compared to B cell antigenic determinants CD20 and CD40. Mech Ageing Dev. 1991;61:209–22.PubMedCrossRefGoogle Scholar
  74. 74.
    Heath WR, Belz GT, Behrens GMN, Smith CM, Forehan SP, Parish IA, et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev. 2004;199:9–26.PubMedCrossRefGoogle Scholar
  75. 75.
    Villadangos JA, Schnorrer P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol. 2007;7:543–55.PubMedCrossRefGoogle Scholar
  76. 76.
    Grolleau-Julius A, Harning EK, Abernathy LM, Yung RL. Impaired dendritic cell function in aging leads to defective antitumor immunity. Cancer Res. 2008;68:6341–9.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Agrawal A, Agrawal S, Tay J, Gupta S. Biology of dendritic cells in aging. J Clin Immunol. 2008;28:14–20.PubMedCrossRefGoogle Scholar
  78. 78.
    Kurban RS, Bhawan J. Histologic changes in skin associated with aging. J Dermatol Surg Oncol. 1990;16:908–14.PubMedCrossRefGoogle Scholar
  79. 79.
    Steuhl KP, Sitz U, Knorr M, Thanos S, Thiel HJ. Age-related distribution of Langerhans cells within the human conjunctival epithelium. Ophthalmologe. 1995;92:21–5.PubMedGoogle Scholar
  80. 80.
    Zavala WD, Cavicchia JC. Deterioration of the Langerhans cell network of the human gingival epithelium with aging. Arch Oral Biol. 2006;51:1150–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Indrasingh I, Chandi G, Jeyaseelan L, Vettivel S, Chandi SM. Quantitative analysis of CD1a (T6) positive Langerhans cells in human tonsil epithelium. Ann Anat. 1999;181:567–72.PubMedCrossRefGoogle Scholar
  82. 82.
    Thiers BH, Maize JC, Spicer SS, Cantor AB. The effect of aging and chronic sun exposure on human Langerhans cell populations. J Invest Dermatol. 1984;82:223–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Gilchrest BA, Murphy GF, Soter NA. Effect of chronologic aging and ultraviolet-irradiation on Langerhans cells in human-epidermis. J Investig Dermatol. 1982;79:85–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Shurin MR, Shurin GV, Chatta GS. Aging and the dendritic cell system: implications for cancer. Crit Rev Oncol Hematol. 2007;64:90–105.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Plackett TP, Boehmer ED, Faunce DE, Kovacs EJ. Aging and innate immune cells. J Leukoc Biol. 2004;76:291–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Born J, Uthgenannt D, Dodt C, Nunninghoff D, Ringvolt E, Wagner T, et al. Cytokine production and lymphocyte subpopulations in aged humans. An assessment during nocturnal sleep. Mech Ageing Dev. 1995;84:113–26.PubMedCrossRefGoogle Scholar
  87. 87.
    Ogawa T, Kitagawa M, Hirokawa K. Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech Ageing Dev. 2000;117:57–68.PubMedCrossRefGoogle Scholar
  88. 88.
    McLachlan JA, Serkin CD, Morrey KM, Bakouche O. Antitumoral properties of aged human monocytes. J Immunol. 1995;154:832–43.PubMedGoogle Scholar
  89. 89.
    Alvarez E, Santa Maria C. Influence of the age and sex on respiratory burst of human monocytes. Mech Ageing Dev. 1996;90:157–61.PubMedCrossRefGoogle Scholar
  90. 90.
    Meyer KC, Ershler W, Rosenthal NS, Lu XG, Peterson K. Immune dysregulation in the aging human lung. Am J Respir Crit Care Med. 1996;153:1072–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Bartneck M, Skazik C, Paul NE, Salber J, Klee D, Zwadlo-Klarwasser G. The RGD coupling strategy determines the inflammatory response of human primary macrophages in vitro and angiogenesis in vivo. Macromol Biosci. 2014;14:411–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Chen LC, Pace JL, Russell SW, Morrison DC. Altered regulation of inducible nitric oxide synthase expression in macrophages from senescent mice. Infect Immun. 1996;64:4288–98.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, et al. Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol. 2009;30:325–33.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Facchini A, Mariani E, Mariani AR, Papa S, Vitale M, Manzoli FA. Increased number of circulating Leu 11+ (CD 16) large granular lymphocytes and decreased NK activity during human ageing. Clin Exp Immunol. 1987;68:340–7.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Zhang Y, Wallace DL, de Lara CM, Ghattas H, Asquith B, Worth A, et al. In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology. 2007;121:258–65.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Dorfman JR, Raulet DH. Acquisition of Ly49 receptor expression by developing natural killer cells. J Exp Med. 1998;187:609–18.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, et al. NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol. 1999;34:253–65.PubMedCrossRefGoogle Scholar
  98. 98.
    Kutza J, Murasko DM. Effects of aging on natural killer cell activity and activation by interleukin-2 and IFN-α. Cell Immunol. 1994;155:195–204.PubMedCrossRefGoogle Scholar
  99. 99.
    Luger TA, Beissert S, Schwarz T. The epidermal cytokine network. In: Skin immune system (SIS). Boca Raton: CRC Press; 1997. p. 271–310.Google Scholar
  100. 100.
    Sauder DN, Stanulis-Praeger BM, Gilchrest BA. Autocrine growth stimulation of human keratinocytes by epidermal cell-derived thymocyte-activating factor: implications for skin aging. Arch Dermatol Res. 1988;280:71–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Gilchrest BA, Garmyn M, Yaar M. Aging and photoaging affect gene expression in cultured human keratinocytes. Arch Dermatol. 1994;130:82–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Compton C, Tongxaa Y, Trookman N, Zhao H, Roy D. TGF-β1 gene expression in cultured human keratinocytes does not decrease with biologic age. J Investig Dermatol. 1994;103:127–33.PubMedCrossRefGoogle Scholar
  103. 103.
    Compton CC, Tong Y, Trookman N, Zhao H, Roy D, Press W. Transforming growth factor alpha gene expression in cultured human keratinocytes is unaffected by cellular aging. Arch Dermatol. 1995;131:683–90.PubMedCrossRefGoogle Scholar
  104. 104.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNγ, and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–11.PubMedCrossRefGoogle Scholar
  106. 106.
    Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.PubMedCrossRefGoogle Scholar
  107. 107.
    Klein G. Immunological surveillance against neoplasia. Harvey Lect. 1973;(69):71–102.Google Scholar
  108. 108.
    Stutman O. Immunodepression and malignancy. Adv Cancer Res. 1975;22:261–422.PubMedCrossRefGoogle Scholar
  109. 109.
    Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71.PubMedCrossRefGoogle Scholar
  110. 110.
    Birkeland SA, Storm HH, Lamm LU, Barlow L, Blohme I, Forsberg B, et al. Cancer risk after renal transplantation in the Nordic countries, 1964-1986. Int J Cancer. 1995;60:183–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol Ser A Biol Med Sci. 2014;69:S4–9.CrossRefGoogle Scholar
  112. 112.
    Franceschi C, Bonafe M, Valensin S. Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine. 2000;18:1717–20.PubMedCrossRefGoogle Scholar
  113. 113.
    Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. Curr Opin Immunol. 2010;22:507–13.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;2:4172.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120:513–22.PubMedCrossRefGoogle Scholar
  116. 116.
    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Balkwill FR, Mantovani A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol. 2012;22:33–40.PubMedCrossRefGoogle Scholar
  118. 118.
    Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009;15:425–30.PubMedCrossRefGoogle Scholar
  119. 119.
    Meyer C, Sevko A, Ramacher M, Bazhin AV, Falk CS, Osen W, et al. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci U S A. 2011;108:17111–6.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Bowdish DM. Myeloid-derived suppressor cells, age and cancer. Oncoimmunology. 2013;2:e24754.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, et al. Blood CD33(+)HLA-DR(−) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol. 2013;93:633–7.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Song L, Kim YH, Chopra RK, Proust JJ, Nagel JE, Nordin AA, et al. Age-related effects in T cell activation and proliferation. Exp Gerontol. 1993;28:313–21.PubMedCrossRefGoogle Scholar
  123. 123.
    Ryan SO, Johnson JL, Cobb BA. Neutrophils confer T cell resistance to myeloid-derived suppressor cell-mediated suppression to promote chronic inflammation. J Immunol. 2013;190:5037–47.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Thomas L. Cellular and humoral aspects of the hypersensitive states 1959.Google Scholar
  125. 125.
    Burnet M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J. 1957;1:841–7.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Old LJ. Cancer immunology: the search for specificity—G.H.A. Clowes Memorial Lecture. Cancer Res. 1981;41:361–75.PubMedGoogle Scholar
  127. 127.
    Knuth A, Danowski B, Oettgen HF, Old LJ. T cell-mediated cytotoxicity against autologous malignant melanoma: analysis with interleukin 2-dependent T cell cultures. Proc Natl Acad Sci U S A. 1984;81:3511–5.Google Scholar
  128. 128.
    Van Der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van Den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–7.PubMedCrossRefGoogle Scholar
  129. 129.
    Sahin U, Türeci Ö, Schmitt H, Cochlovius B, Johannes T, Schmits R, et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A. 1995;92:11810–3.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Dighe AS, Richards E, Old LJ, Schreiber RD. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity. 1994;1:447–56.PubMedCrossRefGoogle Scholar
  131. 131.
    Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Investig. 2007;117:1137–46.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Vesely MD, Schreiber RD. Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Ann N Y Acad Sci. 2013;1284:1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Braumüller H, Wieder T, Brenner E, Aßmann S, Hahn M, Alkhaled M, et al. T-helper-1-cell cytokines drive cancer into senescence. Nature. 2013;494:361–5.PubMedCrossRefGoogle Scholar
  135. 135.
    Teng MWL, Vesely MD, Duret H, McLaughlin N, Towne JE, Schreiber RD, et al. Opposing roles for IL-23 and IL-12 in maintaining occult cancer in an equilibrium state. Cancer Res. 2012;72:3987–96.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121:1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480–9.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Gajewski TF, Fuertes M, Spaapen R, Zheng Y, Kline J. Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol. 2011;23:286–92.PubMedCrossRefGoogle Scholar
  139. 139.
    Sportès C, Hakim F. Aging, immunity and cancer. In: Fulop T, Franceschi C, Hirokawa K, Pawelec G, editors. Handbook on immunosenescence. Dordrecht: Springer; 2009. p. 1119–38.CrossRefGoogle Scholar
  140. 140.
    Epstein EH. Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer. 2008;8:743–54.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Wei Q. Effect of aging on DNA repair and skin carcinogenesis: a minireview of population-based studies. J Investig Dermatol Symp Proc. 1998;3:19–22.PubMedGoogle Scholar
  142. 142.
    Rass K, Reichrath J. UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer. In: Reichrath J, editor. Sunlight, vitamin D and skin cancer. New York: Springer; 2008. p. 162–78.CrossRefGoogle Scholar
  143. 143.
    MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76:1536–8.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    van Duin D, Shaw AC. Toll-like receptors in older adults. J Am Geriatr Soc. 2007;55:1438–44.PubMedCrossRefGoogle Scholar
  145. 145.
    Schon MP, Schon M. Imiquimod: mode of action. Br J Dermatol. 2007;157(Suppl 2):8–13.PubMedCrossRefGoogle Scholar
  146. 146.
    Rosso S, Zanetti R, Martinez C, Tormo MJ, Schraub S, Sancho-Garnier H, et al. The multicentre south European study ‘Helios’. II: different sun exposure patterns in the aetiology of basal cell and squamous cell carcinomas of the skin. Br J Cancer. 1996;73:1447–54.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Wang J, Aldabagh B, Yu J, Arron ST. Role of human papillomavirus in cutaneous squamous cell carcinoma: a meta-analysis. J Am Acad Dermatol. 2014;70:621–9.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Lasithiotakis KG, Petrakis IE, Garbe C. Cutaneous melanoma in the elderly: epidemiology, prognosis and treatment. Melanoma Res. 2010;20:163–70.PubMedGoogle Scholar
  149. 149.
    Balch CM, Soong SJ, Gershenwald JE, Thompson JF, Reintgen DS, Cascinelli N, et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol. 2001;19:3622–34.PubMedCrossRefGoogle Scholar
  150. 150.
    Chao C, Martin RC II, Ross MI, Reintgen DS, Edwards MJ, Noyes RD, et al. Correlation between prognostic factors and increasing age in melanoma. Ann Surg Oncol. 2004;11:259–64.PubMedCrossRefGoogle Scholar
  151. 151.
    Chang CK, Jacobs IA, Vizgirda VM, Salti GI. Melanoma in the elderly patient. Arch Surg. 2003;138:1135–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Lynch SA, Houghton AN. Cancer immunology. Curr Opin Oncol. 1993;5:145–50.PubMedCrossRefGoogle Scholar
  153. 153.
    Russo AE, Ferrau F, Antonelli G, Priolo D, McCubrey JA, Libra M. Malignant melanoma in elderly patients: biological, surgical and medical issues. Expert Rev Anticancer Ther. 2015;15:101–8.PubMedCrossRefGoogle Scholar
  154. 154.
    Ott PA. Combined BRAF and MEK inhibition in BRAF(V600E) mutant melanoma: a synergistic and potentially safe combination partner with immunotherapy. Ann Transl Med. 2015;3:313.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Robey RC, Bower M. Facing up to the ongoing challenge of Kaposi’s sarcoma. [Miscellaneous article]. Curr Opin Infect Dis. 2015;28(1):31–40.PubMedCrossRefGoogle Scholar
  157. 157.
    Unemori P, Leslie KS, Hunt PW, Sinclair E, Epling L, Mitsuyasu R, et al. Immunosenescence is associated with presence of Kaposi’s sarcoma in antiretroviral treated HIV infection. AIDS. 2013;27:1735–42.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Bhatia S, Afanasiev O, Nghiem P. Immunobiology of Merkel cell carcinoma: implications for immunotherapy of a polyomavirus-associated cancer. Curr Oncol Rep. 2011;13:488–97.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Becker JC, Houben R, Ugurel S, Trefzer U, Pfohler C, Schrama DMC, Polyomavirus I. Frequently present in Merkel cell carcinoma of European patients. J Invest Dermatol. 2008;129:248–50.PubMedCrossRefGoogle Scholar
  160. 160.
    Tolstov YL, Pastrana DV, Feng H, Becker JC, Jenkins FJ, Moschos S, et al. Human Merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. Int J Cancer. 2009;125(6): 1250.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Garrett GL, Zargham H, Schulman JM, Jafarian F, SS Y, Arron ST. Merkel cell carcinoma in organ transplant recipients: case reports and review of the literature. JAAD Case Rep. 2015;1:S29–32.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Yale School of Medicine, Yale University School of MedicineNew HavenUSA
  2. 2.Department of DermatologyYale School of MedicineNew HavenUSA

Personalised recommendations