Skin Diseases in the Immunosuppressed pp 185-202 | Cite as
Immunosenescence and Cutaneous Malignancies
Chapter
First Online:
Abstract
The increased incidence of skin malignancies in the elderly can be attributed to a myriad of environmental and genetic factors. Among these are the not fully understood cellular and molecular changes of immunosenescence. Understanding how the immune system is dysregulated in advanced age, as well as how it interfaces with the multifaceted roles of the immune system in carcinogenesis and neoplastic control, will aid in developing effective immune strategies and improved therapeutic interventions for skin malignancies in the aging population.
Keywords
Skin Cutaneous Malignancies Elderly ImmunosenescenceReferences
- 1.Stern RS. Prevalence of a history of skin cancer in 2007: results of an incidence-based model. Arch Dermatol. 2010;146:279–82.PubMedCrossRefGoogle Scholar
- 2.American Cancer Society. Cancer Facts & Figures 2018. Atlanta: American Cancer Society; 2018.Google Scholar
- 3.Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P, et al. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 2005;41:45–60.PubMedCrossRefGoogle Scholar
- 4.DePinho RA. The age of cancer. Nature. 2000;408:248–54.PubMedCrossRefGoogle Scholar
- 5.Caruso C, Lio D, Cavallone L, Franceschi C. Aging, longevity, inflammation, and cancer. Ann NY Acad Sci. 2004;1028:1–13.PubMedCrossRefGoogle Scholar
- 6.Scotto J, Fears TR, Fraumeni JF. Incidence of nonmelanoma skin cancer in the United States. Bethesda, MD: US Department of Health and Human Services Washington; 1983. p. 113.Google Scholar
- 7.Little EG, Eide MJ. Update on the current state of melanoma incidence. Dermatol Clin. 2012;30:355–61.PubMedCrossRefGoogle Scholar
- 8.Jemal A, Saraiya M, Patel P, Cherala SS, Barnholtz-Sloan J, Kim J, et al. Recent trends in cutaneous melanoma incidence and death rates in the United States, 1992–2006. J Am Acad Dermatol. 2011;65:S17–25.e1–3.PubMedCrossRefGoogle Scholar
- 9.Albores-Saavedra J, Batich K, Chable-Montero F, Sagy N, Schwartz AM, Henson DE. Merkel cell carcinoma demographics, morphology, and survival based on 3870 cases: a population based study. J Cutan Pathol. 2010;37:20–7.PubMedCrossRefGoogle Scholar
- 10.Boshoff C, Weiss RA. Epidemiology and pathogenesis of Kaposi’s sarcoma-associated herpesvirus. Philos Trans R Soc Lond Ser B Biol Sci. 2001;356:517–34.CrossRefGoogle Scholar
- 11.Schwartz RA, Micali G, Nasca MR, Scuderi L. Kaposi sarcoma: a continuing conundrum. J Am Acad Dermatol. 2008;59:179–206.PubMedCrossRefGoogle Scholar
- 12.Bishop JM. Molecular themes in oncogenesis. Cell. 1991;64:235–48.PubMedCrossRefGoogle Scholar
- 13.Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194:23–8.PubMedCrossRefGoogle Scholar
- 14.Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMedCrossRefGoogle Scholar
- 15.Armitage P, Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer. 1954;8:1–12.PubMedCrossRefPubMedCentralGoogle Scholar
- 16.Renan MJ. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog. 1993;7:139–46.PubMedCrossRefGoogle Scholar
- 17.Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.PubMedCrossRefGoogle Scholar
- 18.Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 1991;51:3075–9.PubMedGoogle Scholar
- 19.Goukassian D, Gad F, Yaar M, Eller MS, Nehal US, Gilchrest BA. Mechanisms and implications of the age-associated decrease in DNA repair capacity. FASEB J. 2000;14:1325–34.PubMedCrossRefGoogle Scholar
- 20.Ramsey MJ, Moore DH II, Briner JF, Lee DA, Olsen L, Senft JR, et al. The effects of age and lifestyle factors on the accumulation of cytogenetic damage as measured by chromosome painting. Mutat Res. 1995;338:95–106.PubMedCrossRefGoogle Scholar
- 21.Malaguarnera G, Giordano M, Cappellani A, Berretta M, Malaguarnera M, Perrotta RE. Skin cancers in elderly patients. Anti Cancer Agents Med Chem. 2013;13:1406–11.CrossRefGoogle Scholar
- 22.Kolodner RD, Tytell JD, Schmeits JL, Kane MF, Gupta RD, Weger J, et al. Germ-line msh6 mutations in colorectal cancer families. Cancer Res. 1999;59:5068–74.PubMedGoogle Scholar
- 23.Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000;16:168–74.PubMedCrossRefGoogle Scholar
- 24.Issa JP. Aging and epigenetic drift: a vicious cycle. J Clin Investig. 2014;124:24–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 25.Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC. Telomere reduction in human colorectal carcinoma and with ageing. Nature. 1990;346:866–8.PubMedCrossRefGoogle Scholar
- 26.Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A. 1992;89:10114–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 27.Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci U S A. 2003;100(Suppl 1):11830–5.PubMedCrossRefPubMedCentralGoogle Scholar
- 28.Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992;11:1921–9.PubMedPubMedCentralGoogle Scholar
- 29.Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature. 2000;406:641–5.PubMedCrossRefGoogle Scholar
- 30.Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 2015;13:45.PubMedCrossRefPubMedCentralGoogle Scholar
- 31.Pelengaris S, Littlewood T, Khan M, Elia G, Evan G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell. 1999;3:565–77.PubMedCrossRefGoogle Scholar
- 32.Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, et al. Essential role for oncogenic Ras in tumour maintenance. Nature. 1999;400:468–72.PubMedCrossRefGoogle Scholar
- 33.Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92:9363–7.PubMedCrossRefPubMedCentralGoogle Scholar
- 34.Campisi J. Aging and cancer: the double-edged sword of replicative senescence. J Am Geriatr Soc. 1997;45:482–8.PubMedCrossRefGoogle Scholar
- 35.Shelton DN, Chang E, Whittier PS, Choi D, Funk WD. Microarray analysis of replicative senescence. Curr Biol. 1999;9:939–45.PubMedCrossRefGoogle Scholar
- 36.Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103:481–90.PubMedCrossRefPubMedCentralGoogle Scholar
- 37.Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2:737–44.PubMedCrossRefPubMedCentralGoogle Scholar
- 38.Pawelec G, Derhovanessian E, Larbi A. Immunosenescence and cancer. Crit Rev Oncol Hematol. 2010;75:165–72.PubMedCrossRefGoogle Scholar
- 39.Gelman R, Watson A, Bronson R, Yunis E. Murine chromosomal regions correlated with longevity. Genetics. 1988;118:693–704.PubMedPubMedCentralGoogle Scholar
- 40.Agarwal S, Busse PJ. Innate and adaptive immunosenescence. Ann Allergy Asthma Immunol. 2010;104:183–90.PubMedCrossRefGoogle Scholar
- 41.Gavazzi G, Krause K-H. Ageing and infection. Lancet Infect Dis. 2002;2:659–66.PubMedCrossRefGoogle Scholar
- 42.Sunderkotter C, Kalden H, Luger TA. Aging and the skin immune system. Arch Dermatol. 1997;133:1256–62.PubMedCrossRefGoogle Scholar
- 43.Aspinall R. Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. J Immunol. 1997;158:3037–45.PubMedGoogle Scholar
- 44.Flores KG, Li J, Sempowski GD, Haynes BF, Hale LP. Analysis of the human thymic perivascular space during aging. J Clin Investig. 1999;104:1031–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 45.Naylor K, Li G, Vallelo AN, Lee WW, Koetz K, Bryl E, et al. The influence of age on T cell generation and TCR diversity. J Immunol. 2005;174:7446–52.PubMedCrossRefGoogle Scholar
- 46.Andrew D, Aspinall R. Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp Gerontol. 2002;37:455–63.PubMedCrossRefGoogle Scholar
- 47.Aggarwal S, Gupta S. Increased apoptosis of T cell subsets in aging humans: altered expression of Fas (CD95), Fas ligand, Bcl-2, and Bax. J Immunol. 1998;160:1627–37.PubMedGoogle Scholar
- 48.Kaszubowska L. Telomere shortening and ageing of the immune system. J Physiol Pharmacol. 2008;59:169–86.PubMedGoogle Scholar
- 49.Yang Y, An J, Weng NP. Telomerase is involved in IL-7-mediated differential survival of naive and memory CD4+ T cells. J Immunol. 2008;180:3775–81.PubMedCrossRefPubMedCentralGoogle Scholar
- 50.Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol. 2002;169:1984–92.PubMedCrossRefGoogle Scholar
- 51.McElhaney JE, Effros RB. Immunosenescence: what does it mean to health outcomes in older adults? Curr Opin Immunol. 2009;21:418–24.PubMedCrossRefPubMedCentralGoogle Scholar
- 52.Haynes L, Linton PJ, Eaton SM, Tonkonogy SL, Swain SL. Interleukin 2, but not other common γ chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naive T cells of aged mice. J Exp Med. 1999;190:1013–23.PubMedCrossRefPubMedCentralGoogle Scholar
- 53.Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL. CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proc Natl Acad Sci U S A. 2003;100:15053–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 54.Haynes L, Eaton SM, Burns EM, Randall TD, Swain SL. Newly generated CD4 T cells in aged animals do not exhibit age-related defects in response to antigen. J Exp Med. 2005;201:845–51.PubMedCrossRefPubMedCentralGoogle Scholar
- 55.Eaton SM, Burns EM, Kusser K, Randall TD, Haynes L. Age-related defects in CD4 T cell cognate helper function lead to reductions in humoral responses. J Exp Med. 2004;200:1613–22.PubMedCrossRefPubMedCentralGoogle Scholar
- 56.Kovaiou RD, Grubeck-Loebenstein B. Age-associated changes within CD4+ T cells. Immunol Lett. 2006;107:8–14.PubMedCrossRefGoogle Scholar
- 57.Engwerda CR, Fox BS, Handwerger BS. Cytokine production by T lymphocytes from young and aged mice. J Immunol. 1996;156:3621–30.PubMedGoogle Scholar
- 58.Fulop T, Larbi A, Wikby A, Mocchegiani E, Hirokawa K, Pawelec G. Dysregulation of T cell function in the elderly: scientific basis and clinical implications. Drugs Aging. 2005;22:589–603.Google Scholar
- 59.Larbi A, Douziech N, Dupuis G, Khalil A, Pelletier H, Guerard KP, et al. Age-associated alterations in the recruitment of signal-transduction proteins to lipid rafts in human T lymphocytes. J Leukoc Biol. 2004;75:373–81.PubMedCrossRefGoogle Scholar
- 60.Powers DC. Influenza A virus-specific cytotoxic T lymphocyte activity declines with advancing age. J Am Geriatr Soc. 1993;41:1–5.PubMedCrossRefGoogle Scholar
- 61.Effros RB, Walford RL. The immune response of aged mice to influenza: diminished T cell proliferation, interleukin 2 production and cytotoxicity. Cell Immunol. 1983;81:298–305.Google Scholar
- 62.Po JL, Gardner EM, Anaraki F, Katsikis PD, Murasko DM. Age-associated decrease in virus-specific CD8+ T lymphocytes during primary influenza infection. Mech Ageing Dev. 2002;123:1167–81.PubMedCrossRefGoogle Scholar
- 63.Zhao L, Sun L, Wang H, Haixia M, Liu G, Zhao Y. Changes of CD4+CD25+Foxp3+ regulatory T cells in aged Balb/c mice. J Leukoc Biol. 2007;81:1386–94.PubMedCrossRefGoogle Scholar
- 64.Gregg R, Smith CM, Clark FJ, Dunnion D, Khan N, Chakraverty R, et al. The number of human peripheral blood CD4+ CD25high regulatory T cells increases with age. Clin Exp Immunol. 2005;140:540–6.PubMedCrossRefPubMedCentralGoogle Scholar
- 65.Castle SC, Norman DC, Perls TT, Chang MP, Yoshikawa TT, Makinodan T. Analysis of cutaneous delayed-type hypersensitivity reaction and T cell proliferative response in elderly nursing home patients: an approach to identifying immunodeficient patients. Gerontology. 1990;36:217–29.PubMedCrossRefGoogle Scholar
- 66.Frasca D, Nguyen D, Riley RL, Blomberg BB. Decreased E12 and/or E47 transcription factor activity in the bone marrow as well as in the spleen of aged mice. J Immunol. 2003;170:719–26.PubMedCrossRefGoogle Scholar
- 67.Labrie Iii JE, Sah AP, Allman DM, Cancro MP, Gerstein RM. Bone marrow microenvironmental changes underlie reduced RAG-mediated recombination and B cell generation in aged mice. J Exp Med. 2004;200:411–23.CrossRefGoogle Scholar
- 68.Siegrist CA, Aspinall R. B cell responses to vaccination at the extremes of age. Nat Rev Immunol. 2009;9:185–94.Google Scholar
- 69.Sato H. The distribution, immune complex trapping ability and morphology of follicular dendritic cells in popliteal lymph nodes of aged rats. Histol Histopathol. 1998;13:99–108.PubMedGoogle Scholar
- 70.Weksler ME, Szabo P. The effect of age on the B cell repertoire. J Clin Immunol. 2000;20:240–9.Google Scholar
- 71.Yang X, Stedra J, Cerny J. Relative contribution of T and B cells to hypermutation and selection of the antibody repertoire in germinal centers of aged mice. J Exp Med. 1996;183:959–70.PubMedCrossRefGoogle Scholar
- 72.Miller RA. The aging immune system: primer and prospectus. Science. 1996;273:70–4.PubMedCrossRefGoogle Scholar
- 73.Whisler RL, Williams Jr JW, Newhouse YG. Human B cell proliferative responses during aging. Reduced RNA synthesis and DNA replication after signal transduction by surface immunoglobulins compared to B cell antigenic determinants CD20 and CD40. Mech Ageing Dev. 1991;61:209–22.PubMedCrossRefGoogle Scholar
- 74.Heath WR, Belz GT, Behrens GMN, Smith CM, Forehan SP, Parish IA, et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev. 2004;199:9–26.PubMedCrossRefGoogle Scholar
- 75.Villadangos JA, Schnorrer P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol. 2007;7:543–55.PubMedCrossRefGoogle Scholar
- 76.Grolleau-Julius A, Harning EK, Abernathy LM, Yung RL. Impaired dendritic cell function in aging leads to defective antitumor immunity. Cancer Res. 2008;68:6341–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 77.Agrawal A, Agrawal S, Tay J, Gupta S. Biology of dendritic cells in aging. J Clin Immunol. 2008;28:14–20.PubMedCrossRefGoogle Scholar
- 78.Kurban RS, Bhawan J. Histologic changes in skin associated with aging. J Dermatol Surg Oncol. 1990;16:908–14.PubMedCrossRefGoogle Scholar
- 79.Steuhl KP, Sitz U, Knorr M, Thanos S, Thiel HJ. Age-related distribution of Langerhans cells within the human conjunctival epithelium. Ophthalmologe. 1995;92:21–5.PubMedGoogle Scholar
- 80.Zavala WD, Cavicchia JC. Deterioration of the Langerhans cell network of the human gingival epithelium with aging. Arch Oral Biol. 2006;51:1150–5.PubMedCrossRefGoogle Scholar
- 81.Indrasingh I, Chandi G, Jeyaseelan L, Vettivel S, Chandi SM. Quantitative analysis of CD1a (T6) positive Langerhans cells in human tonsil epithelium. Ann Anat. 1999;181:567–72.PubMedCrossRefGoogle Scholar
- 82.Thiers BH, Maize JC, Spicer SS, Cantor AB. The effect of aging and chronic sun exposure on human Langerhans cell populations. J Invest Dermatol. 1984;82:223–6.PubMedCrossRefGoogle Scholar
- 83.Gilchrest BA, Murphy GF, Soter NA. Effect of chronologic aging and ultraviolet-irradiation on Langerhans cells in human-epidermis. J Investig Dermatol. 1982;79:85–8.PubMedCrossRefGoogle Scholar
- 84.Shurin MR, Shurin GV, Chatta GS. Aging and the dendritic cell system: implications for cancer. Crit Rev Oncol Hematol. 2007;64:90–105.PubMedCrossRefPubMedCentralGoogle Scholar
- 85.Plackett TP, Boehmer ED, Faunce DE, Kovacs EJ. Aging and innate immune cells. J Leukoc Biol. 2004;76:291–9.PubMedCrossRefGoogle Scholar
- 86.Born J, Uthgenannt D, Dodt C, Nunninghoff D, Ringvolt E, Wagner T, et al. Cytokine production and lymphocyte subpopulations in aged humans. An assessment during nocturnal sleep. Mech Ageing Dev. 1995;84:113–26.PubMedCrossRefGoogle Scholar
- 87.Ogawa T, Kitagawa M, Hirokawa K. Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech Ageing Dev. 2000;117:57–68.PubMedCrossRefGoogle Scholar
- 88.McLachlan JA, Serkin CD, Morrey KM, Bakouche O. Antitumoral properties of aged human monocytes. J Immunol. 1995;154:832–43.PubMedGoogle Scholar
- 89.Alvarez E, Santa Maria C. Influence of the age and sex on respiratory burst of human monocytes. Mech Ageing Dev. 1996;90:157–61.PubMedCrossRefGoogle Scholar
- 90.Meyer KC, Ershler W, Rosenthal NS, Lu XG, Peterson K. Immune dysregulation in the aging human lung. Am J Respir Crit Care Med. 1996;153:1072–9.PubMedCrossRefGoogle Scholar
- 91.Bartneck M, Skazik C, Paul NE, Salber J, Klee D, Zwadlo-Klarwasser G. The RGD coupling strategy determines the inflammatory response of human primary macrophages in vitro and angiogenesis in vivo. Macromol Biosci. 2014;14:411–8.PubMedCrossRefGoogle Scholar
- 92.Chen LC, Pace JL, Russell SW, Morrison DC. Altered regulation of inducible nitric oxide synthase expression in macrophages from senescent mice. Infect Immun. 1996;64:4288–98.PubMedPubMedCentralGoogle Scholar
- 93.Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, et al. Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol. 2009;30:325–33.PubMedCrossRefPubMedCentralGoogle Scholar
- 94.Facchini A, Mariani E, Mariani AR, Papa S, Vitale M, Manzoli FA. Increased number of circulating Leu 11+ (CD 16) large granular lymphocytes and decreased NK activity during human ageing. Clin Exp Immunol. 1987;68:340–7.PubMedPubMedCentralGoogle Scholar
- 95.Zhang Y, Wallace DL, de Lara CM, Ghattas H, Asquith B, Worth A, et al. In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology. 2007;121:258–65.PubMedCrossRefPubMedCentralGoogle Scholar
- 96.Dorfman JR, Raulet DH. Acquisition of Ly49 receptor expression by developing natural killer cells. J Exp Med. 1998;187:609–18.PubMedCrossRefPubMedCentralGoogle Scholar
- 97.Borrego F, Alonso MC, Galiani MD, Carracedo J, Ramirez R, Ostos B, et al. NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol. 1999;34:253–65.PubMedCrossRefGoogle Scholar
- 98.Kutza J, Murasko DM. Effects of aging on natural killer cell activity and activation by interleukin-2 and IFN-α. Cell Immunol. 1994;155:195–204.PubMedCrossRefGoogle Scholar
- 99.Luger TA, Beissert S, Schwarz T. The epidermal cytokine network. In: Skin immune system (SIS). Boca Raton: CRC Press; 1997. p. 271–310.Google Scholar
- 100.Sauder DN, Stanulis-Praeger BM, Gilchrest BA. Autocrine growth stimulation of human keratinocytes by epidermal cell-derived thymocyte-activating factor: implications for skin aging. Arch Dermatol Res. 1988;280:71–6.PubMedCrossRefGoogle Scholar
- 101.Gilchrest BA, Garmyn M, Yaar M. Aging and photoaging affect gene expression in cultured human keratinocytes. Arch Dermatol. 1994;130:82–6.PubMedCrossRefGoogle Scholar
- 102.Compton C, Tongxaa Y, Trookman N, Zhao H, Roy D. TGF-β1 gene expression in cultured human keratinocytes does not decrease with biologic age. J Investig Dermatol. 1994;103:127–33.PubMedCrossRefGoogle Scholar
- 103.Compton CC, Tong Y, Trookman N, Zhao H, Roy D, Press W. Transforming growth factor alpha gene expression in cultured human keratinocytes is unaffected by cellular aging. Arch Dermatol. 1995;131:683–90.PubMedCrossRefGoogle Scholar
- 104.Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.PubMedCrossRefGoogle Scholar
- 105.Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFNγ, and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410:1107–11.PubMedCrossRefGoogle Scholar
- 106.Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.PubMedCrossRefGoogle Scholar
- 107.Klein G. Immunological surveillance against neoplasia. Harvey Lect. 1973;(69):71–102.Google Scholar
- 108.Stutman O. Immunodepression and malignancy. Adv Cancer Res. 1975;22:261–422.PubMedCrossRefGoogle Scholar
- 109.Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71.PubMedCrossRefGoogle Scholar
- 110.Birkeland SA, Storm HH, Lamm LU, Barlow L, Blohme I, Forsberg B, et al. Cancer risk after renal transplantation in the Nordic countries, 1964-1986. Int J Cancer. 1995;60:183–9.PubMedCrossRefGoogle Scholar
- 111.Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol Ser A Biol Med Sci. 2014;69:S4–9.CrossRefGoogle Scholar
- 112.Franceschi C, Bonafe M, Valensin S. Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine. 2000;18:1717–20.PubMedCrossRefGoogle Scholar
- 113.Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. Curr Opin Immunol. 2010;22:507–13.PubMedCrossRefPubMedCentralGoogle Scholar
- 114.Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;2:4172.PubMedCrossRefPubMedCentralGoogle Scholar
- 115.Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120:513–22.PubMedCrossRefGoogle Scholar
- 116.Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.PubMedCrossRefPubMedCentralGoogle Scholar
- 117.Balkwill FR, Mantovani A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol. 2012;22:33–40.PubMedCrossRefGoogle Scholar
- 118.Aggarwal BB, Vijayalekshmi RV, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res. 2009;15:425–30.PubMedCrossRefGoogle Scholar
- 119.Meyer C, Sevko A, Ramacher M, Bazhin AV, Falk CS, Osen W, et al. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci U S A. 2011;108:17111–6.PubMedCrossRefPubMedCentralGoogle Scholar
- 120.Bowdish DM. Myeloid-derived suppressor cells, age and cancer. Oncoimmunology. 2013;2:e24754.PubMedCrossRefPubMedCentralGoogle Scholar
- 121.Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, et al. Blood CD33(+)HLA-DR(−) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol. 2013;93:633–7.PubMedCrossRefPubMedCentralGoogle Scholar
- 122.Song L, Kim YH, Chopra RK, Proust JJ, Nagel JE, Nordin AA, et al. Age-related effects in T cell activation and proliferation. Exp Gerontol. 1993;28:313–21.PubMedCrossRefGoogle Scholar
- 123.Ryan SO, Johnson JL, Cobb BA. Neutrophils confer T cell resistance to myeloid-derived suppressor cell-mediated suppression to promote chronic inflammation. J Immunol. 2013;190:5037–47.PubMedCrossRefPubMedCentralGoogle Scholar
- 124.Thomas L. Cellular and humoral aspects of the hypersensitive states 1959.Google Scholar
- 125.Burnet M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J. 1957;1:841–7.PubMedCrossRefPubMedCentralGoogle Scholar
- 126.Old LJ. Cancer immunology: the search for specificity—G.H.A. Clowes Memorial Lecture. Cancer Res. 1981;41:361–75.PubMedGoogle Scholar
- 127.Knuth A, Danowski B, Oettgen HF, Old LJ. T cell-mediated cytotoxicity against autologous malignant melanoma: analysis with interleukin 2-dependent T cell cultures. Proc Natl Acad Sci U S A. 1984;81:3511–5.Google Scholar
- 128.Van Der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van Den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–7.PubMedCrossRefGoogle Scholar
- 129.Sahin U, Türeci Ö, Schmitt H, Cochlovius B, Johannes T, Schmits R, et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A. 1995;92:11810–3.PubMedCrossRefPubMedCentralGoogle Scholar
- 130.Dighe AS, Richards E, Old LJ, Schreiber RD. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity. 1994;1:447–56.PubMedCrossRefGoogle Scholar
- 131.Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Investig. 2007;117:1137–46.PubMedCrossRefPubMedCentralGoogle Scholar
- 132.Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.PubMedCrossRefPubMedCentralGoogle Scholar
- 133.Vesely MD, Schreiber RD. Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Ann N Y Acad Sci. 2013;1284:1–5.PubMedCrossRefPubMedCentralGoogle Scholar
- 134.Braumüller H, Wieder T, Brenner E, Aßmann S, Hahn M, Alkhaled M, et al. T-helper-1-cell cytokines drive cancer into senescence. Nature. 2013;494:361–5.PubMedCrossRefGoogle Scholar
- 135.Teng MWL, Vesely MD, Duret H, McLaughlin N, Towne JE, Schreiber RD, et al. Opposing roles for IL-23 and IL-12 in maintaining occult cancer in an equilibrium state. Cancer Res. 2012;72:3987–96.PubMedCrossRefPubMedCentralGoogle Scholar
- 136.Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121:1–14.PubMedCrossRefPubMedCentralGoogle Scholar
- 137.Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 138.Gajewski TF, Fuertes M, Spaapen R, Zheng Y, Kline J. Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol. 2011;23:286–92.PubMedCrossRefGoogle Scholar
- 139.Sportès C, Hakim F. Aging, immunity and cancer. In: Fulop T, Franceschi C, Hirokawa K, Pawelec G, editors. Handbook on immunosenescence. Dordrecht: Springer; 2009. p. 1119–38.CrossRefGoogle Scholar
- 140.Epstein EH. Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer. 2008;8:743–54.PubMedCrossRefPubMedCentralGoogle Scholar
- 141.Wei Q. Effect of aging on DNA repair and skin carcinogenesis: a minireview of population-based studies. J Investig Dermatol Symp Proc. 1998;3:19–22.PubMedGoogle Scholar
- 142.Rass K, Reichrath J. UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer. In: Reichrath J, editor. Sunlight, vitamin D and skin cancer. New York: Springer; 2008. p. 162–78.CrossRefGoogle Scholar
- 143.MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76:1536–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 144.van Duin D, Shaw AC. Toll-like receptors in older adults. J Am Geriatr Soc. 2007;55:1438–44.PubMedCrossRefGoogle Scholar
- 145.Schon MP, Schon M. Imiquimod: mode of action. Br J Dermatol. 2007;157(Suppl 2):8–13.PubMedCrossRefGoogle Scholar
- 146.Rosso S, Zanetti R, Martinez C, Tormo MJ, Schraub S, Sancho-Garnier H, et al. The multicentre south European study ‘Helios’. II: different sun exposure patterns in the aetiology of basal cell and squamous cell carcinomas of the skin. Br J Cancer. 1996;73:1447–54.PubMedCrossRefPubMedCentralGoogle Scholar
- 147.Wang J, Aldabagh B, Yu J, Arron ST. Role of human papillomavirus in cutaneous squamous cell carcinoma: a meta-analysis. J Am Acad Dermatol. 2014;70:621–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 148.Lasithiotakis KG, Petrakis IE, Garbe C. Cutaneous melanoma in the elderly: epidemiology, prognosis and treatment. Melanoma Res. 2010;20:163–70.PubMedGoogle Scholar
- 149.Balch CM, Soong SJ, Gershenwald JE, Thompson JF, Reintgen DS, Cascinelli N, et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol. 2001;19:3622–34.PubMedCrossRefGoogle Scholar
- 150.Chao C, Martin RC II, Ross MI, Reintgen DS, Edwards MJ, Noyes RD, et al. Correlation between prognostic factors and increasing age in melanoma. Ann Surg Oncol. 2004;11:259–64.PubMedCrossRefGoogle Scholar
- 151.Chang CK, Jacobs IA, Vizgirda VM, Salti GI. Melanoma in the elderly patient. Arch Surg. 2003;138:1135–8.PubMedCrossRefGoogle Scholar
- 152.Lynch SA, Houghton AN. Cancer immunology. Curr Opin Oncol. 1993;5:145–50.PubMedCrossRefGoogle Scholar
- 153.Russo AE, Ferrau F, Antonelli G, Priolo D, McCubrey JA, Libra M. Malignant melanoma in elderly patients: biological, surgical and medical issues. Expert Rev Anticancer Ther. 2015;15:101–8.PubMedCrossRefGoogle Scholar
- 154.Ott PA. Combined BRAF and MEK inhibition in BRAF(V600E) mutant melanoma: a synergistic and potentially safe combination partner with immunotherapy. Ann Transl Med. 2015;3:313.PubMedPubMedCentralGoogle Scholar
- 155.Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.PubMedCrossRefPubMedCentralGoogle Scholar
- 156.Robey RC, Bower M. Facing up to the ongoing challenge of Kaposi’s sarcoma. [Miscellaneous article]. Curr Opin Infect Dis. 2015;28(1):31–40.PubMedCrossRefGoogle Scholar
- 157.Unemori P, Leslie KS, Hunt PW, Sinclair E, Epling L, Mitsuyasu R, et al. Immunosenescence is associated with presence of Kaposi’s sarcoma in antiretroviral treated HIV infection. AIDS. 2013;27:1735–42.PubMedCrossRefPubMedCentralGoogle Scholar
- 158.Bhatia S, Afanasiev O, Nghiem P. Immunobiology of Merkel cell carcinoma: implications for immunotherapy of a polyomavirus-associated cancer. Curr Oncol Rep. 2011;13:488–97.PubMedCrossRefPubMedCentralGoogle Scholar
- 159.Becker JC, Houben R, Ugurel S, Trefzer U, Pfohler C, Schrama DMC, Polyomavirus I. Frequently present in Merkel cell carcinoma of European patients. J Invest Dermatol. 2008;129:248–50.PubMedCrossRefGoogle Scholar
- 160.Tolstov YL, Pastrana DV, Feng H, Becker JC, Jenkins FJ, Moschos S, et al. Human Merkel cell polyomavirus infection II. MCV is a common human infection that can be detected by conformational capsid epitope immunoassays. Int J Cancer. 2009;125(6): 1250.PubMedCrossRefPubMedCentralGoogle Scholar
- 161.Garrett GL, Zargham H, Schulman JM, Jafarian F, SS Y, Arron ST. Merkel cell carcinoma in organ transplant recipients: case reports and review of the literature. JAAD Case Rep. 2015;1:S29–32.PubMedCrossRefPubMedCentralGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018