Semantic Web Datatype Inference: Towards Better RDF Matching

  • Irvin Dongo
  • Yudith Cardinale
  • Firas Al-Khalil
  • Richard Chbeir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10570)


In the context of RDF document matching/integration, the datatype information, which is related to literal objects, is an important aspect to be analyzed in order to better determine similar RDF documents. In this paper, we propose a datatype inference process based on four steps: (i) predicate information analysis (i.e., deduce the datatype from existing range property); (ii) analysis of the object value itself by a pattern-matching process (i.e., recognize the object lexical-space); (iii) semantic analysis of the predicate name and its context; and (iv) generalization of numeric and binary datatypes to ensure the integration. We evaluated the performance and the accuracy of our approach with datasets from DBpedia. Results show that the execution time of the inference process is linear and its accuracy can increase up to 97.10%.


Datatype analysis Datatype inference XML RDF Semantic Web 





  1. 1.
    XML Grid - Online XML Editor (2010). Accessed 03 May 2017
  2. 2.
    Free Formatter - Free Online Tools For Developers (2011). Accessed 03 May 2017
  3. 3.
    Algergawy, A., et al.: A sequence-based ontology matching approach. In: Proceedings of European Conference on Artificial Intelligence Workshops, pp. 26–30 (2008)Google Scholar
  4. 4.
    Algergawy, A., Nayak, R., Saake, G.: XML Schema Element Similarity Measures: A Schema Matching Context. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS, vol. 5871, pp. 1246–1253. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-05151-7_36 CrossRefGoogle Scholar
  5. 5.
    Arts, T., Castro, L.M., Hughes, J.: Testing erlang data types with quviq quickcheck. In: Proceedings of the 7th ACM SIGPLAN Workshop on ERLANG, pp. 1–8. ACM, New York (2008)Google Scholar
  6. 6.
    Boulytchev, D.: Combinators and type-driven transformers in objective caml. Sci. Comput. Program. 114, 57–73 (2015)CrossRefGoogle Scholar
  7. 7.
    Chidlovskii, B.: Schema extraction from xml collections. In: Proceedings of the 2Nd ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL 2002, pp. 291–292. ACM, New York (2002)Google Scholar
  8. 8.
    Dan Brickley, R.G.: RDF Schema 1.1. Accessed 06 Dec 2016
  9. 9.
    Fluet, M., Pucella, R.: Practical datatype specializations with phantom types and recursion schemes. Electron. Notes Theor. Comput. Sci. 148(2), 211–237 (2006)CrossRefGoogle Scholar
  10. 10.
    Gunaratna, K., Thirunarayan, K., Sheth, A., Cheng, G.: Gleaning types for literals in rdf triples with application to entity summarization. In: Proceedings of the 13th International Conference on The SW., pp. 85–100, NY, USA (2016)Google Scholar
  11. 11.
    Hegewald, J., Naumann, F., Weis, M.: Xstruct: Efficient schema extraction from multiple and large xml documents. In: Proceedings of the 22nd International Conference on Data Engineering Workshops, p. 81, Washington, DC, USA (2006)Google Scholar
  12. 12.
    Holdermans, S.: Random testing of purely functional abstract datatypes: guidelines for dealing with operation invariance. In: Proceedings of the 15th Symposium on Principles and Practice of Declarative Programming, pp. 275–284. ACM, New York (2013)Google Scholar
  13. 13.
    Jeremy J. Carroll, J.Z.P.: XML Schema Datatypes in RDF and OWL, W3C Working Group Note 14 March 2006. Accessed 06 Dec 2016 (2006)
  14. 14.
    Kellou-Menouer, K., Kedad, Z.: Discovering Types in RDF Datasets. In: Gandon, F., Guéret, C., Villata, S., Breslin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9341, pp. 77–81. Springer, Cham (2015). doi: 10.1007/978-3-319-25639-9_15 CrossRefGoogle Scholar
  15. 15.
    Liu, B., Huang, K., Li, J., Zhou, M.: An incremental and distributed inference method for large-scale ontologies based on mapreduce paradigm. IEEE Trans. Cybern. 45(1), 53–64 (2015)CrossRefGoogle Scholar
  16. 16.
    Microsoft. Xml Schema Inference - Developer Network. Accessed 03 May 2017
  17. 17.
    Mukkala, L., Arvo, J., Lehtonen, T., Knuutila, T., et al.: Current State of Ontology Matching. A Survey of Ontology and Schema Matching (2015)Google Scholar
  18. 18.
    Patrick J. Hayes, P.F.P.-S.: RDF 1.1 Semantics, W3C Recommendation 25 February 2014 (2014). Accessed 06 Dec 2016
  19. 19.
    Paul V. Biron, A.M.: XML Schema Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2004 (2004). Accessed 06 Dec 2016
  20. 20.
    Paulheim, H., Bizer, C.: Type Inference on Noisy RDF Data. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 510–525. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41335-3_32 CrossRefGoogle Scholar
  21. 21.
    Polleres, A., Hogan, A., Harth, A., Decker, S.: Can we ever catch up with the web? Semant. Web 1(1,2), 45–52 (2010)Google Scholar
  22. 22.
    Sandro Hawke, P.A., Herman, I.: W3C Semantic Web Activity (2001). Accessed 06 Dec 2016
  23. 23.
    Sleeman, J., Finin, T., Joshi, A.: Entity type recognition for heterogeneous semantic graphs. AI Mag. 36(1), 75–86 (2015)CrossRefGoogle Scholar
  24. 24.
    Wang, M., Gibbons, J., Matsuda, K., Hu, Z.: Refactoring pattern matching. Sci. Comput. Program. 78(11), 2216–2242 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Irvin Dongo
    • 1
  • Yudith Cardinale
    • 2
  • Firas Al-Khalil
    • 3
  • Richard Chbeir
    • 1
  1. 1.Univ Pau and Pays Adour, LIUPPA, EA3000AngletFrance
  2. 2.Dpto. de Computación y Tecnología de la InformaciónUniv. Simón BolívarCaracasVenezuela
  3. 3.University College Cork, CRCTCCorkIreland

Personalised recommendations