When Will a Repost Cascade Settle Down?

  • Chi ChenEmail author
  • HongLiang Tian
  • Jie Tang
  • ChunXiao Xing
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10569)


Repost cascades play a critical role in information diffusion on social media sites. They are developed by series of reposts and stop eventually. Substantial previous work has studied and predicted various aspects of repost cascades such as growth, burst and recur. However, how or even whether it is possible to predict when a repost cascade will settle down remains to be an open problem. Existing models cannot be directly applied to solve the problem as the feature based models are sensitive to features, while the point process based models assume that the followers of all reposters are disjoint. In this paper, we propose a novel definition settling time to model this problem. We develop a point process based model to get rid of the restriction in previous studies and make an accurate prediction of the settling time. We conduct an extensive set of experiments on Sina Weibo dataset. The results show that our model achieves over 10% performance gain than the state-of-the-art approaches after observing the cascades for 24 h.


Repost cascade Point process Prediction 



This work was supported by NSFC (91646202), the National High-tech R&D Program of China (SS2015AA020102), Research/Project 2017YB142 supported by Ministry of Education of The People’s Republic of China Research Center for Online Education Qtone Education Group Online Education Fund, the 1000-Talent program, Tsinghua University Initiative Scientific Research Program.


  1. 1.
    Agarwal, D., Chen, B.C., Elango, P.: Spatio-temporal models for estimating click-through rate. In: Proceedings of the 18th International Conference on World Wide Web, pp. 21–30. ACM (2009)Google Scholar
  2. 2.
    Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: Proceedings of the 23rd International Conference on World Wide Web, pp. 925–936. ACM (2014)Google Scholar
  3. 3.
    Chongfu, H.: Principle of information diffusion. Fuzzy Sets Syst. 91(1), 69–90 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Crane, R., Sornette, D.: Robust dynamic classes revealed by measuring the response function of a social system. Proc. Nat. Acad. Sci. 105(41), 15649–15653 (2008)CrossRefGoogle Scholar
  5. 5.
    Gao, J., Shen, H., Liu, S., Cheng, X.: Modeling and predicting retweeting dynamics via a mixture process. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 33–34. International World Wide Web Conferences Steering Committee (2016)Google Scholar
  6. 6.
    Goel, A., Munagala, K., Sharma, A., Zhang, H.: A note on modeling retweet cascades on twitter. In: Gleich, D.F., Komjáthy, J., Litvak, N. (eds.) WAW 2015. LNCS, vol. 9479, pp. 119–131. Springer, Cham (2015). doi: 10.1007/978-3-319-26784-5_10CrossRefGoogle Scholar
  7. 7.
    Hong, L., Dan, O., Davison, B.D.: Predicting popular messages in twitter. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp. 57–58. ACM (2011)Google Scholar
  8. 8.
    Khelil, A., Becker, C., Tian, J., Rothermel, K.: An epidemic model for information diffusion in manets. In: Proceedings of the 5th ACM International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems, pp. 54–60. ACM (2002)Google Scholar
  9. 9.
    Kobayashi, R., Lambiotte, R.: TiDeH: time-dependent hawkes process for predicting retweet dynamics. arXiv preprint arXiv:1603.09449 (2016)
  10. 10.
    Kupavskii, A., Ostroumova, L., Umnov, A., Usachev, S., Serdyukov, P., Gusev, G., Kustarev, A.: Prediction of retweet cascade size over time. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 2335–2338. ACM (2012)Google Scholar
  11. 11.
    Luo, Z., Wang, Y., Wu, X., Cai, W., Chen, T.: On burst detection and prediction in retweeting sequence. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS, vol. 9077, pp. 96–107. Springer, Cham (2015). doi: 10.1007/978-3-319-18038-0_8CrossRefGoogle Scholar
  12. 12.
    Matsubara, Y., Sakurai, Y., Prakash, B.A., Li, L., Faloutsos, C.: Rise and fall patterns of information diffusion: model and implications. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 6–14. ACM (2012)Google Scholar
  13. 13.
    Mohler, G.O., Short, M.B., Brantingham, P.J., Schoenberg, F.P., Tita, G.E.: Self-exciting point process modeling of crime. J. Am. Stat. Assoc. 106(493), 100–108 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rogers, E.M.: Diffusion of Innovations. Simon and Schuster, New York City (2010)Google Scholar
  15. 15.
    Shen, H.W., Wang, D., Song, C., Barabási, A.L.: Modeling and predicting popularity dynamics via reinforced poisson processes. arXiv preprint arXiv:1401.0778 (2014)
  16. 16.
    Szabo, G., Huberman, B.A.: Predicting the popularity of online content. Commun. ACM 53(8), 80–88 (2010)CrossRefGoogle Scholar
  17. 17.
    Wang, S., Yan, Z., Hu, X., Philip, S.Y., Li, Z.: Burst time prediction in cascades. In: AAAI, pp. 325–331 (2015)Google Scholar
  18. 18.
    Wang, Y., Li, Y., You, Q., Zhang, X., Niemi, R., Luo, J.: Voting with feet: who are leaving hillary clinton and donald trump? arXiv preprint arXiv:1604.07103 (2016)
  19. 19.
    Zaman, T., Fox, E.B., Bradlow, E.T., et al.: A bayesian approach for predicting the popularity of tweets. Ann. Appl. Stat. 8(3), 1583–1611 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zaman, T.R., Herbrich, R., Van Gael, J., Stern, D.: Predicting information spreading in Twitter. In: Workshop on Computational Social Science and the Wisdom of Crowds, NIPS, vol. 104, pp. 17599–17601. Citeseer (2010)Google Scholar
  21. 21.
    Zhang, Y., Li, X., Wang, J., Zhang, Y., Xing, C., Yuan, X.: An efficient framework for exact set similarity search using tree structure indexes. In: ICDE, pp. 759–770 (2017)Google Scholar
  22. 22.
    Zhao, Q., Erdogdu, M.A., He, H.Y., Rajaraman, A., Leskovec, J.: SEISMIC: a self-exciting point process model for predicting tweet popularity. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1513–1522. ACM (2015)Google Scholar
  23. 23.
    Zhou, K., Zha, H., Song, L.: Learning social infectivity in sparse low-rank networks using multi-dimensional hawkes processes. In: AISTATS, vol. 31, pp. 641–649 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chi Chen
    • 1
    Email author
  • HongLiang Tian
    • 1
  • Jie Tang
    • 1
  • ChunXiao Xing
    • 1
  1. 1.Research Institute of Information Technology, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations