Computational Topology Techniques for Characterizing Time-Series Data

  • Nicole SandersonEmail author
  • Elliott Shugerman
  • Samantha Molnar
  • James D. Meiss
  • Elizabeth Bradley
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10584)


Topological data analysis (TDA), while abstract, allows a characterization of time-series data obtained from nonlinear and complex dynamical systems. Though it is surprising that such an abstract measure of structure—counting pieces and holes—could be useful for real-world data, TDA lets us compare different systems, and even do membership testing or change-point detection. However, TDA is computationally expensive and involves a number of free parameters. This complexity can be obviated by coarse-graining, using a construct called the witness complex. The parametric dependence gives rise to the concept of persistent homology: how shape changes with scale. Its results allow us to distinguish time-series data from different systems—e.g., the same note played on different musical instruments.


  1. 1.
    Alexander, Z., Bradley, E., Meiss, J., Sanderson, N.: Simplicial multivalued maps and the witness complex for dynamical analysis of time series. SIAM J. Appl. Dyn. Sys. 14, 1278–1307 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bradley, E., Kantz, H.: Nonlinear time-series analysis revisited. Chaos 25(9), 097610 (2015)CrossRefGoogle Scholar
  3. 3.
    Cvitanovic, P.: Invariant measurement of strange sets in terms of circles. Phys. Rev. Lett. 61, 2729–2732 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dasu, T., Krishnan, S., Lin, D., Venkatasubramanian, S., Yi, K.: Change (detection) you can believe in: finding distributional shifts in data streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 21–34. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03915-7_3 CrossRefGoogle Scholar
  5. 5.
    de Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Alg. Geom. Topology 7(1), 339–358 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Domingos, P.: A general framework for mining massive data streams. In: Proceedings Interface 2006 (2006)Google Scholar
  7. 7.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Disc. Comp. Geom. 28, 511–533 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Edelsbrunner, H., Mücke, E.: Three-dimensional alpha shapes. ACM Trans. Graph. 13, 43–72 (1994)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fraser, A., Swinney, H.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134–1140 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall/CRC, Atlanta (2010)Google Scholar
  11. 11.
    Garland, J., Bradley, E., Meiss, J.: Exploring the topology of dynamical reconstructions. Physica D 334, 49–59 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ghrist, R.: Barcodes: the persistent topology of data. Bull. Amer. Math. Soc. 45(1), 61–75 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. AMS, vol. 157. Springer, New York (2004)zbMATHGoogle Scholar
  14. 14.
    Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining minimum embedding dimension using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)CrossRefGoogle Scholar
  15. 15.
    Muldoon, M., MacKay, R., Huke, J., Broomhead, D.: Topology from a time series. Physica D 65, 1–16 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Munkres, J.: Elements of Algebraic Topology. Benjamin/Cummings, Menlo Park (1984)zbMATHGoogle Scholar
  17. 17.
    Rakthanmanon, T., Keogh, E., Lonardi, S., Evans, S.: Time series epenthesis: clustering time series streams requires ignoring some data. In: Proceedings ICDM, pp. 547–556. IEEE, December 2011Google Scholar
  18. 18.
    Robins, V.: Computational topology for point data: Betti numbers of \(\alpha \)-shapes. In: Mecke, K., Stoyan, D. (eds.) Morphology of Condensed Matter. Lecture Notes in Physics, vol. 600, pp. 261–274. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Robins, V., Abernethy, J., Rooney, N., Bradley, E.: Topology and intelligent data analysis. Intell. Data Anal. 8, 505–515 (2004)Google Scholar
  20. 20.
    Robins, V., Turner, K.: Principal component analysis of persistent homology rank functions with case studies of spatial point patterns, sphere packing and colloids. Physica D 334, 99–117 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    de Silva, V., Carlsson, E.: Topological estimation using witness complexes. In: Alexa, M., Rusinkiewicz, S. (eds.) Eurographics Symposium on Point-Based Graphics, pp. 157–166. The Eurographics Association (2004)Google Scholar
  22. 22.
    Song, M., Wang, H.: Highly efficient incremental estimation of Gaussian mixture models for online data stream clustering. In: Priddy, K. (ed.) Proceedings of SPIE, vol. 5803, pp. 174–183. International Society for Optical Engineering (2005)Google Scholar
  23. 23.
    Xia, K., Feng, X., Tong, Y., Wei, G.: Persistent homology for the quantitative prediction of fullerene stability. J. Comput. Chem. 36(6), 408–422 (2015)CrossRefGoogle Scholar
  24. 24.
    Zomorodian, A.: Topological data analysis. In: Advances in Applied and Computational Topology, vol 70. American Mathematical Society (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nicole Sanderson
    • 1
    Email author
  • Elliott Shugerman
    • 1
  • Samantha Molnar
    • 1
  • James D. Meiss
    • 1
  • Elizabeth Bradley
    • 1
  1. 1.University of ColoradoBoulderUSA

Personalised recommendations