Simulated Annealing with a Time-Slot Heuristic for Ready-Mix Concrete Delivery

  • Muhammad Sulaman
  • Xinye CaiEmail author
  • Mustafa Mısır
  • Zhun Fan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10593)


The concrete delivery problem (CDP) is an NP-hard, real world combinatorial optimization problem. The CDP involves tightly interrelated routing and scheduling constraints that have to be satisfied by considering the tradeoff between production and distribution costs. Various exact and heuristic methods have been developed to address the CDP. However, due to the limitation of the exact methods for dealing with such a complex problem, (meta-)heuristics have been more popular. For this purpose, the present study proposes a hybrid algorithm combining simulated annealing (SA) with a time-slot heuristic (TH) for tackling the CDP. The TH is applied for generating new solutions through perturbation while simulated annealing is utilized to decide on whether to accept these solutions. The proposed algorithm, i.e. SA-TH, is compared to an existing CDP heuristic on a diverse set of CDP benchmarks. The computational results conducted through a series of experiments validate the efficiency and success of SA-TH.


Ready-mix concrete delivery Vehicle routing Scheduling 



This work was supported in part by the National Natural Science Foundation of China (NSFC) under grant 61300159, by the Natural Science Foundation of Jiangsu Province of China under grant BK20130808 and by China Postdoctoral Science Foundation under grant 2015M571751. The authors thank J. Kinable, T. Wauters and G. Vanden Berghe, for providing their CDP source code.


  1. 1.
    Kinable, J., Wauters, T., Berghe, G.V.: The concrete delivery problem. Comput. Oper. Res. 48, 53–68 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kallehauge, B., Larsen, J., Madsen, O.B., Solomon, M.M.: Vehicle routing problem with time windows. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, pp. 67–98. Springer, Boston (2005). doi: 10.1007/0-387-25486-2_3 CrossRefGoogle Scholar
  3. 3.
    Frizzell, P.W., Giffin, J.W.: The split delivery vehicle scheduling problem with time windows and grid network distances. Comput. Oper. Res. 22(6), 655–667 (1995)CrossRefzbMATHGoogle Scholar
  4. 4.
    Aarts, E., Korst, J., Michiels, W.: Simulated annealing. In: Burke, E., Kendall, G. (eds.) Search Methodologies, pp. 265–285. Springer, Boston (2014). doi: 10.1007/978-1-4614-6940-7_10 CrossRefGoogle Scholar
  5. 5.
    Yan, S., Lai, W., Chen, M.: Production scheduling and truck dispatching of ready mixed concrete. Transp. Res. Part E: Logist. Transp. Rev. 44(1), 164–179 (2008)CrossRefGoogle Scholar
  6. 6.
    Asbach, L., Dorndorf, U., Pesch, E.: Analysis, modeling and solution of the concrete delivery problem. Eur. J. Oper. Res. 193(3), 820–835 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Lu, M.: HKCONSIM: a simulation platform for planning and optimizing concrete plant operations in Hong Kong. In: Proceedings of International Conference on Innovation and Sustainable Development of Civil Engineering in the 21st Century, Beijing, China, pp. 278–283 (2002)Google Scholar
  8. 8.
    Lu, M., Wu, D., Zhang, J.: A particle swarm optimization-based approach to tackling simulation optimization of stochastic, large-scale and complex systems. In: Yeung, D.S., Liu, Z.-Q., Wang, X.-Z., Yan, H. (eds.) ICMLC 2005. LNCS, vol. 3930, pp. 528–537. Springer, Heidelberg (2006). doi: 10.1007/11739685_55 CrossRefGoogle Scholar
  9. 9.
    Lu, M., Lam, H.C.: Optimized concrete delivery scheduling using combined simulation and genetic algorithms. In: Proceedings of the 37th Conference on Winter Simulation, Winter Simulation Conference, pp. 2572–2580 (2005)Google Scholar
  10. 10.
    Liu, Z., Zhang, Y., Li, M.: Integrated scheduling of ready-mixed concrete production and delivery. Autom. Constr. 48, 31–43 (2014)CrossRefGoogle Scholar
  11. 11.
    Lin, P.C., Wang, J., Huang, S.H., Wang, Y.T.: Dispatching ready mixed concrete trucks under demand postponement and weight limit regulation. Autom. Constr. 19(6), 798–807 (2010)CrossRefGoogle Scholar
  12. 12.
    Mayteekrieangkrai, N., Wongthatsanekorn, W.: Optimized ready mixed concrete truck scheduling for uncertain factors using bee algorithm. Songklanakarin J. Sci. Technol. 37(2), 221–230 (2015)Google Scholar
  13. 13.
    Naso, D., Surico, M., Turchiano, B., Kaymak, U.: Genetic algorithms for supply-chain scheduling: a case study in the distribution of ready-mixed concrete. Eur. J. Oper. Res. 177(3), 2069–2099 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Maghrebi, M., Periaraj, V., Waller, S.T., Sammut, C.: Column generation-based approach for solving large-scale ready mixed concrete delivery dispatching problems. Comput.-Aided Civil Infrastruct. Eng. 31(2), 145–159 (2016)CrossRefGoogle Scholar
  15. 15.
    Devapriya, P., Ferrell, W., Geismar, N.: Integrated production and distribution scheduling with a perishable product. Eur. J. Oper. Res. 259(3), 906–916 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Silva, C., Faria, J., Abrantes, P., Sousa, J., Surico, M., Naso, D.: Concrete delivery using a combination of GA and ACO. In: 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference, CDC-ECC 2005, pp. 7633–7638. IEEE (2005)Google Scholar
  17. 17.
    Yan, S., Lai, W.: An optimal scheduling model for ready mixed concrete supply with overtime considerations. Autom. Constr. 16(6), 734–744 (2007)CrossRefGoogle Scholar
  18. 18.
    Misir, M., Vancroonenburg, W., Verbeeck, K., Berghe, G.V.: A selection hyper-heuristic for scheduling deliveries of ready-mixed concrete. In: Proceedings of the Metaheuristics International Conference (MIC), Udine, Italy, pp. 289–298 (2011)Google Scholar
  19. 19.
    Berghman, L., Leus, R., Spieksma, F.C.: Optimal solutions for a dock assignment problem with trailer transportation. Ann. Oper. Res. 213, 1–23 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Bilgin, B., Demeester, P., Misir, M., Vancroonenburg, W., Vanden Berghe, G.: One hyper-heuristic approach to two timetabling problems in health care. J. Heuristics 18(3), 401–434 (2012)CrossRefGoogle Scholar
  21. 21.
    Salomon, R.: Evolutionary algorithms and gradient search: similarities and differences. IEEE Trans. Evol. Comput. 2(2), 45–55 (1998)CrossRefGoogle Scholar
  22. 22.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Muhammad Sulaman
    • 1
  • Xinye Cai
    • 1
    Email author
  • Mustafa Mısır
    • 1
  • Zhun Fan
    • 2
  1. 1.College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.School of EngineeringShantou UniversityGuangdongChina

Personalised recommendations