Advertisement

A Constraint Partitioning Method Based on Minimax Strategy for Constrained Multiobjective Optimization Problems

  • Xueqiang Li
  • Shen Fu
  • Han Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10593)

Abstract

Constrained multiobjective optimization problem (CMOP) is an important research topic in the field of evolutionary computation. In terms of constraint handling, most of the existing evolutionary algorithms consider more about the proportion of infeasible solutions in population, but less concern about the distribution of infeasible solutions. Therefore, we propose a constraint partitioning method based on minimax strategy (CPM/MS) to solve CMOP. Firstly, we analyze the impact of the distribution of infeasible solutions on selecting solutions and give a preconditioning method for infeasible solutions. Secondly, we divide the preconditioned solutions into different regions by minimax strategy. Finally, we update individuals based on feasibility criteria method in each region. The effectiveness of CPM/MS algorithm is extensively evaluated on a suite of 10 bound-constrained numerical optimization problems, where the results show that CPM/MS algorithm is able to obtain considerably better fronts for some of the problems compared with some the state-of-the-art multiobjective evolutionary algorithms.

Keywords

CMOP Evolutionary computation Minimax strategy Constraint handling 

References

  1. 1.
    Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cai, X., Hu, Z., Fan, Z.: A novel memetic algorithm based on invasive weed optimization and di_erential evolution for constrained optimization. Soft. Comput. 17(10), 1893–1910 (2013)CrossRefGoogle Scholar
  3. 3.
    Hu, Z., Cai, X., Fan, Z.: An improved memetic algorithm using ring neighborhood topology for constrained optimization. Soft. Comput. 18(10), 2023–2041 (2013)CrossRefGoogle Scholar
  4. 4.
    Li, Z.Y., Huang, T., Chen, S.M., Li, R.F.: Overview of constrained optimization evolutionary algorithms. J. Softw. (2017)Google Scholar
  5. 5.
    Farmani, R., Wright, J.A.: Self-adaptive fitness formulation for constrained optimization. IEEE Trans. Evol. Comput. 7(5), 445–455 (2003)CrossRefGoogle Scholar
  6. 6.
    Xiao, J.H., Xu, J., Shao, Z., Jiang, C.F., Pan, L.: A genetic algorithm for solving multi-constrained function optimization problems based on KS function. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, pp. 4497–4501. IEEE Press (2007)Google Scholar
  7. 7.
    Tessema, B., Yen, G.G.: A adaptive penalty formulation for constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern. (A) 39(3), 565–578 (2009)CrossRefGoogle Scholar
  8. 8.
    Surry, P.D., Radcliffe, N.J.: The COMOGA method: Constrained optimization by multiobjective genetic algorithm. Control Cybern. 26(3), 391–412 (1997)zbMATHGoogle Scholar
  9. 9.
    Wang, Y., Cai, Z.X., Guo, G., Zhou, Y.R.: A dynamic hybrid framework for constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern. (B) 42(1), 203–217 (2012)CrossRefGoogle Scholar
  10. 10.
    Cai, Z.X., Wang, Y.: Combining multiobjective optimization with differential evolution to solve constrained optimization problems. IEEE Trans. Evol. Comput. 16(1), 117–134 (2012)CrossRefGoogle Scholar
  11. 11.
    Gong, W.Y., Cai, Z.H.: A multiobjective differential evolution algorithm for constrained optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, Hong Kong, pp. 181–188. IEEE Press (2008)Google Scholar
  12. 12.
    Gao, W.F., Yen, G., Liu, S.Y.: A dual-population differential evolution with coevolution for constrained optimization. IEEE Trans. Cybern. 45(5), 1108–1121 (2014)Google Scholar
  13. 13.
    Zielinski, R., Laur, R.: Constrained single-objective optimization using differential evolution. In: Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, pp. 223–230. IEEE Press (2006)Google Scholar
  14. 14.
    Sarker, R.A., Elsayed, S.M., Ray, T.: Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans. Evol. Comput. 18(5), 689–707 (2014)CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Wang, B.C., Li, H.X., Yen, G.G.: Incorporating objective function information into the feasibility rule for constrained evolutionary optimization. IEEE Trans. Cybern. 46(12), 2938–2952 (2015)CrossRefGoogle Scholar
  16. 16.
    Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 4(3), 284–294 (2000)CrossRefGoogle Scholar
  17. 17.
    Zhang, M., Luo, W.J., Wang, X.: Differential evolution with dynamic stochastic selection for constrained optimization. Inf. Sci. 178(15), 3043–3074 (2008)CrossRefGoogle Scholar
  18. 18.
    Takahama, T., Sakai, S.: Constrained optimization by the ε constrained differential evolution with gradient-based mutation and feasible elites. In: Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, pp. 372–378. IEEE Press (2006)Google Scholar
  19. 19.
    Bu, C., Luo, W., Zhu, T.: Differential evolution with a species-based repair strategy for constrained optimization. In: Proceedings of the 2014 IEEE Congress on Evolutionary Computation, Beijing, pp. 967–974. IEEE Press (2014)Google Scholar
  20. 20.
    Takahama, T., Sakai, S.: Efficient constrained optimization by the ε constrained rank-based differential evolution. In: Proceedings of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, pp. 1–8. IEEE Press (2012)Google Scholar
  21. 21.
    Ishibuchi, H., Murata, T.: A Multiobjective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 28(3), 392–403 (1998)CrossRefGoogle Scholar
  22. 22.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  23. 23.
    Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, pp. 283–290. Morgan Kaufmann Publishers Inc. (2001)Google Scholar
  24. 24.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar
  25. 25.
    Ishibuchi, H., Murata, T.: A multiobjective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 28(3), 392–403 (1998)CrossRefGoogle Scholar
  26. 26.
    Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)CrossRefGoogle Scholar
  27. 27.
    Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 18(3), 450–455 (2014)CrossRefGoogle Scholar
  28. 28.
    Cai, X., Li, Y., Fan, Z., Zhang, Q.: An external archive guided multiobjective evolutionary algorithm based on decomposition for combinatorial optimization. IEEE Trans. Evol. Comput. 19(4), 508–523 (2015)CrossRefGoogle Scholar
  29. 29.
    Cai, X., Yang, Z., Fan, Z., Zhang, Q.: Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization. IEEE Trans. Cybern. PP(99), 1–14 (2016)Google Scholar
  30. 30.
    Jiang, S., Zhang, J., Ong, Y.S., Zhang, A.N., Tan, P.S.: A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm. IEEE Trans. Cybern. 45(10), 2202–2213 (2015)CrossRefGoogle Scholar
  31. 31.
    Liu, H., Li, X., Chen, Y.: Multiobjective evolutionary algorithm based on dynamical crossover and mutation. In: Proceedings of International Conference on Computational Intelligence and Security, Suzhou, pp. 150–155. IEEE (2008)Google Scholar
  32. 32.
    Zhang, Q., Zhou, A.M., Suganthan, P.N., et al.: Multiobjective optimization test instances for the CEC 2009 special session and competition. School of Computer Science and Electrical Engineering, University of Essex, Essex (2009)Google Scholar
  33. 33.
    Zitzler, E., Thiele, L., Laumanns, M., et al.: Performance assessment of multiobjective optimizers: an analys is and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)CrossRefGoogle Scholar
  34. 34.
    Zhang, Q., Suganthan, P.N.: Final report on CEC’09 MOEA competition. School of Computer Science and Electrical Engineering, University of Essex, Essex (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dongguan University of TechnologyDongguanChina
  2. 2.South China University of TechnologyGuangzhouChina

Personalised recommendations