Comparison of Visual Descriptors for 3D Reconstruction of Non-rigid Planar Surfaces

  • Michał BednarekEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 681)


In the deformable surface reconstruction, one relies on local descriptors to be able to perform matching between a reference frame and a deformed frame and afterwards perform optimisation to obtain the reconstruction. The quality of surface modelling highly depends on the matching process. Therefore, I am testing the performance of different detector-descriptor pairs in order to provide hints, which of these is best suitable for 3D reconstruction of non-rigid planar surfaces.


Computer vision Image processing 3D reconstruction Matching Non-rigid surface 



This work was supported by grant No. LIDER/3/0183/L-7/15/NCBR/2016 funded by The National Centre for Research and Development (Poland).


  1. 1.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)CrossRefGoogle Scholar
  2. 2.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Doumanoglou, A., Kargakos, A., Kim, T.-K., Malassiotis, S.: Autonomous active recognition and unfolding of clothes using random decision forests and probabilistic planning. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 987–993, May 2014Google Scholar
  4. 4.
    Garg, R., Roussos, A., Agapito, L.: Dense variational reconstruction of non-rigid surfaces from monocular video. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1272–1279, June 2013Google Scholar
  5. 5.
    Innmann, M., Zollhöfer, M., Nießner, M., Theobalt, C., Stamminger, M.: VolumeDeform: Real-Time Volumetric Non-rigid Reconstruction, pp. 362–379. Springer, Cham (2016)Google Scholar
  6. 6.
    Kita, Y., Kanehiro, F., Ueshiba, T., Kita, N.: Clothes handling based on recognition by strategic observation. In: 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 53–58, October 2011Google Scholar
  7. 7.
    Leutenegger, S., Chli, M., Siegwart, R.: BRISK: binary robust invariant scalable keypoints. In: IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555 (2011)Google Scholar
  8. 8.
    Li, Y., Wang, Y., Case, M., Chang, S., Allen, P.K.: Real-time pose estimation of deformable objects using a volumetric approach. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1046–1052, September 2014Google Scholar
  9. 9.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. (IJCV) 60(2), 91–110 (2004)CrossRefGoogle Scholar
  10. 10.
    Ngo, T.D., Östlund, J., Fua, P.: Template-based monocular 3D shape recovery using Laplacian meshes. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 172–187 (2016)CrossRefGoogle Scholar
  11. 11.
    Bartoli, A., Alcantarilla, P.F., Davison, A.J.: KAZE Features. Springer, Heidelberg (2013)Google Scholar
  12. 12.
    Bartoli, A., Alcantarilla, P.F., Nuevo, J.: Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces (2013)Google Scholar
  13. 13.
    Pickup, D., Sun, X., Rosin, P.L., Martin, R.R., Cheng, Z., Lian, Z., Aono, M., Ben Hamza, A., Bronstein, A., Bronstein, M., Bu, S., Castellani, U., Cheng, S., Garro, V., Giachetti, A., Godil, A., Han, J., Johan, H., Lai, L., Li, B., Li, C., Li, H., Litman, R., Liu, X., Liu, Z., Lu, Y., Tatsuma, A., Ye, J.: SHREC 2014 track: shape retrieval of non-rigid 3D human models. In: Proceedings of the 7th Eurographics Workshop on 3D Object Retrieval, EG 3DOR2014. Eurographics Association (2014)Google Scholar
  14. 14.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (2011)Google Scholar
  15. 15.
    Samir, C., Kurtek, S., Srivastava, A., Canis, M.: Elastic shape analysis of cylindrical surfaces for 3D/2D registration in endometrial tissue characterization. IEEE Trans. Med. Imaging 33(5), 1035–1043 (2014)CrossRefGoogle Scholar
  16. 16.
    Schulman, J., Lee, A., Ho, J., Abbeel, P.: Tracking deformable objects with point clouds. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1130–1137, May 2013Google Scholar
  17. 17.
    Varol, A., Salzmann, M., Fua, P., Urtasun, R.: A constrained latent variable model. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012, pp. 2248–2255. IEEE Computer Society (2012)Google Scholar
  18. 18.
    Weickert, J., Romeny, B.M.T.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7, 398–410 (1998)CrossRefGoogle Scholar
  19. 19.
    Willimon, B., Walker, I., Birchfield, S.: A new approach to clothing classification using mid-level layers. IEEE International Conference on Robotics and Automation (ICRA), pp. 4271–4278, May 2013Google Scholar
  20. 20.
    Yu, R., Russell, C., Campbell, N.D.F., Agapito, L.: Direct, dense, and deformable: template-based non-rigid 3D reconstruction from RGB video. In: International Conference on Computer Vision (ICCV) (2015)Google Scholar
  21. 21.
    Zollhoefer, M., Niessner, M., Izadi, S.M., Rehmann, C., Zach, C., Fisher, M., Wu, C., Fitzgibbon, A., Loop, C., Theobalt, C., Stamminger, M.: Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Graph. 33(4), 156:1–156:12 (2014). LipiecGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Control and Information EngineeringPoznan University of TechnologyPoznańPoland

Personalised recommendations