Plant Secondary Metabolites and Some Plant Growth Regulators Elicited by UV Irradiation, Light And/Or Shade

  • Zornitsa Katerova
  • Dessislava Todorova
  • Iskren Sergiev

Abstract

Classification of plant secondary metabolites and characterization of major plant growth regulators are shortly described. A short account is also given to light, shade and ultraviolet radiation and their impact on plants. Recent investigations regarding secondary metabolite production and alterations in endogenous level of plant growth regulators in medicinal plants grown under light, shade or UV radiation are reviewed and discussed. Some conclusions and future perspectives to enlarge the investigations in this direction are also given.

Keywords

Light Plant growth regulators Plant secondary metabolites Shade UV-irradiation 

Abbreviations

ABA

Abscisic acid

CK

Cytokinin

FR

Far red light

GA

Gibberellic acid

IAA

Indole-3-yl acetic acid

PAR

Photosynthetically active radiation

R

Red light

ROS

Reactive oxygen species

SAR

Shade avoidance response

UV

Ultraviolet radiation

References

  1. Afreen F, Zobayed SMA, Kozai T (2005) Spectral quality and UV-B stress stimulate glycyrrhizin concentration of Glycyrrhiza uralensis in hydroponic and pot system. Plant Physiol Biochem 43:1074–1081CrossRefGoogle Scholar
  2. Afreen F, Zobayed SMA, Kozai T (2006) Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. J Pineal Res 41:108–115CrossRefGoogle Scholar
  3. Ahmad N, Rab A, Ahmad N (2016) Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert). J Photochem Photobiol B 154:51–56CrossRefGoogle Scholar
  4. Alvarenga ICA, Pacheco FV, Silva ST, Bertolucci SKV, Pinto JEBP (2015) In vitro culture of Achillea millefolium L.: quality and intensity of light on growth and production of volatiles. Plant Cell Tiss Org Cult 122:299–308Google Scholar
  5. Barnes PW, Flint SD, Ryel RJ, Tobler MA, Barkley AE, Wargent JJ (2015) Rediscovering leaf optical properties: new insights into plant acclimation to solar UV radiation. Plant Physiol Biochem 93:94–100CrossRefGoogle Scholar
  6. Bernal M, Verdaguer D, Badosa J, Abadía A, Llusià J, Peñuelas J, Núñez-Olivera E, Llorens L (2015) Effects of enhanced UV radiation and water availability on performance, biomass production and photoprotective mechanisms of Laurus nobilis seedlings. Env Exp Bot. 109:264–275CrossRefGoogle Scholar
  7. Björn LO (2015) On the history of phyto-photo UV science (not to be left in skoto toto and silence). Plant Physiol Biochem 93:3–8CrossRefGoogle Scholar
  8. Brechner ML, Albright LD, Weston LA (2011) Effects of UV-B on secondary metabolites of St. John’s wort (Hypericum perforatum L.) grown in controlled environments. Photochem Photobiol 87:680–684CrossRefGoogle Scholar
  9. Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111CrossRefGoogle Scholar
  10. Caputi L, Aprea E (2011) Use of terpenoids as natural flavouring compounds in food industry. Recent Pat Food Nutr Agric 3:9–16CrossRefGoogle Scholar
  11. Carvalho SD, Schwieterman ML, Abrahan CE, Colquhoun TA, Folta KM (2016) Light quality dependent changes in morphology, antioxidant capacity, and volatile production in sweet basil (Ocimum basilicum). Front Plant Sci 7:1328. doi: 10.3389/fpls.2016.01328CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dinkova-Kostova AT (2008) Phytochemicals as protectors against ultraviolet radiation: versatility of effects and mechanisms. Planta Med 74:1548–1559CrossRefGoogle Scholar
  13. do Nascimento NC, Menguer PK, Sperotto RA, de Almeida MR, Fett-Neto AG (2012) Early changes in gene expression induced by acute UV exposure in leaves of Psychotria brachyceras, a bioactive alkaloid accumulating. Plant Mol Biotechnol. doi: 10.1007/s12033-012-9546-3CrossRefGoogle Scholar
  14. Dolzhenko Y, Bertea CM, Occhipinti A, Bossi S, Maffei ME (2010) UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha x piperita L.). J Photochem Photobiol B 100:67–75CrossRefGoogle Scholar
  15. Edreva A (2005) The importance of non-photosynthetic pigments and cinnamic acid derivatives in photoprotection. Agric Ecosyst Env 106:135–146CrossRefGoogle Scholar
  16. Edreva A, Velikova V, Tsonev T, Dagnon S, Gürel A, Aktaş L, Gesheva E (2008) Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Stress protection by secondary metabolites. Gen Appl Plant Physiol 34:67–78Google Scholar
  17. Edreva AM, Velikova V, Tsonev T (2007) Phenylamides in plants. Russ J Plant Physiol 54:287–301CrossRefGoogle Scholar
  18. Eichholz I, Huyskens-Keil S, Keller A, Dulrich, Kroh LW, Rohn S (2011) UV-B-induced changes of volatile metabolites and phenolic compounds in blueberries (Vaccinium corymbosum L.). Food Chem 126:60–64CrossRefGoogle Scholar
  19. Eichholz I, Rohn S, Gamm A, Beesk N, Herppich WB, Kroh LW, Ulrichs C, Huyskens-Keil S (2012) UV-B-mediated flavonoid synthesis in white asparagus (Asparagus officinalis L.). Food Res Internat 48:196–201Google Scholar
  20. Estell RE, Fredrickson EL, James DK (2016) Effect of light intensity and wavelength on concentration of plant secondary metabolites in the leaves of Flourensia cernua. Biochem Syst Ecol 65:108–114CrossRefGoogle Scholar
  21. Ferreira MI, Uliana MR, Costa SM, Magro M, Vianello F, Ming LC, Lima GPP (2016) Exclusion of solar UV radiation increases the yield of curcuminoid in Curcuma longa L. Ind Crops Prod 89:188–194CrossRefGoogle Scholar
  22. Germ M, Stibilj V, Kreft S, Gaberšcǐk A, Kreft I (2010) Flavonoid, tannin and hypericin concentrations in the leaves of St. John’s wort (Hypericum perforatum L.) are affected by UV-B radiation levels. Food Chem 122:471–474CrossRefGoogle Scholar
  23. Gershenzon J (2002) Secondary metabolites and plant defence. In: Taiz L, Zeiger E (eds) Plant physiology, 3rd edn. Sinauer Associates Inc. Publ. Sunderland, Massachusetts, pp 283–311Google Scholar
  24. Gill S, Tuteja N (2010) Polyamines and abiotic stress tolerance. Plant Signal Behav 5:26–33CrossRefGoogle Scholar
  25. Giorgi A, Manzo A, Vagge I, Panseri S (2014) Effect of light environment on growth and Phenylpropanoids of Yarrow (Achillea collina cv. SPAK) grown in the Alps. Photochem Photobiol 90:113–120CrossRefGoogle Scholar
  26. Gommers CMM, Visser EJW, St Onge KR, Voesenek LACJ, Pierik R (2013) Shade tolerance: when growing tall is not an option. Trends Plant Sci 18:65–70CrossRefGoogle Scholar
  27. Grbic N, Paschko K, Pinker I, Böhme MH (2016) Effect of different light spectra by using coloured plastic films on growth, fresh and dry matter, nutrient solution uptake and secondarymetabolites of Perilla frutescens (L.) Britt. Scientia Horticult 210:93–98CrossRefGoogle Scholar
  28. Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 1:35–45CrossRefGoogle Scholar
  29. Gu X-D, Sun M-Y, Zhang L, Fu H-W, Cui L, Chen R-Z, Zhang D-W, Tian J-K (2010) UV-B induced changes in the secondary metabolites of Morus alba L. Leaves Molecules 15:2980–2993CrossRefGoogle Scholar
  30. Guo X-R, Chang B-W, Zu Y-G, Tang Z-H (2014) The impacts of increased nitrate supply on Catharanthus roseus growth and alkaloid accumulations under ultraviolet-B stress. J Plant Interact 9:640–646. doi: 10.1080/17429145.2014.886728CrossRefGoogle Scholar
  31. Häder D-P, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285CrossRefGoogle Scholar
  32. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202CrossRefGoogle Scholar
  33. Hectors K, Prinsen E, De Coen W, Jansen MAK, Guisez Y (2007) Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation show specific changes in morphology and gene expression in the absence of stress symptoms. New Phytol 175:255–270CrossRefGoogle Scholar
  34. Hoffmann AM, Noga G, Hunsche M (2015) High blue light improves acclimation and photosynthetic recovery of pepper plants exposed to UV stress. Environ Exp Bot 109:254–263CrossRefGoogle Scholar
  35. Huché-Thélier L, Crespel L, Le Gourrierec J, Morel P, Sakr S, Leduc N (2016) Light signaling and plant responses to blue and UV radiations—perspectives for applications in horticulture. Environ Exp Bot 121:22–38CrossRefGoogle Scholar
  36. Huyskens-Keil S, Eichholz I, Kroh LW, Rohn S (2007) UV-B induced changes of phenol composition and antioxidant activity in black currant fruit (Ribes nigrum L.). J Appl Bot Food Qual 81:140–144Google Scholar
  37. Ibdah M, Krins A, Seidlitz HK, Heller W, Strack D, Voght T (2002) Spectral dependence of flavonol and betacyanin accumulation in Mesembryanthemum crystallinum under enhanced ultraviolet radiation. Plant Cell Environ 25:1145–1154CrossRefGoogle Scholar
  38. Ioannidis D, Bonner L, Johnson CB (2002) UV-B is required for normal development of oil glands in Ocimum basilicum L. (sweet basil). Ann Bot 90:453–460CrossRefGoogle Scholar
  39. Jansen MAK, Hectors K, O’Brien NM, Guisez Y, Potters G (2008) Plant stress and human health: do human consumers benefit from UV-B acclimated crops? Plant Sci 175:449–458CrossRefGoogle Scholar
  40. Katerova Z, Ivanov S, Prinsen E, Van Onckelen H, Alexieva V, Azmi A (2009) Low doses of ultraviolet-B or ultraviolet-C radiation affect phytohormones in young pea plants. Biol Plant 53:365–368CrossRefGoogle Scholar
  41. Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112:1655–1665CrossRefGoogle Scholar
  42. Keuskamp DH, Sasidharan R, Pierik R (2010) Physiological regulation and functional significance of shade avoidance responses to neighbors. Plant Sig Behav 5:655–662CrossRefGoogle Scholar
  43. Kim S, Yun EJ, Hossain MdA, Lee H, Kim KH (2012) Global profiling of ultraviolet-induced metabolic disruption in Melissa officinalis by using gas chromatography-mass spectrometry. Anal Bioanal Chem 404:553–562CrossRefGoogle Scholar
  44. Kokotkiewicz A, Bucinski A, Luczkiewicz M (2014) Light and temperature conditions affect bioflavonoid accumulation in callus cultures of Cyclopia subternata Vogel (honeybush). Plant Cell Tiss Org Cult 118:589–593. doi: 10.1007/s11240-014-0502-8CrossRefGoogle Scholar
  45. Korkina LG (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol 53:15–25PubMedGoogle Scholar
  46. Kreft S, Štrukelj B, Gaberščik A, Kreft I (2002) Rutin in buckwheat herbs grown at different UV-B radiation levels: comparison of two UV spectrophotometric and an HPLC method. J Exp Bot 53:1801–1804CrossRefGoogle Scholar
  47. Kumari R, Agrawal SB (2010) Supplemental UV-B induced changes in leaf morphology, physiology and secondary metabolites of an indian aromatic plant Cymbopogon citrates (D.C.) Staph under natural field conditions. Int J Environ Stud 67:655–675CrossRefGoogle Scholar
  48. Kurepin LV, Walton LJ, Hayward A, Emery RJN, Reid DM, Chinnappa CC (2012a) Shade light interaction with salicylic acid in regulating growth of sun (alpine) and shade (prairie) ecotypes of Stellaria longipes. Plant Growth Regul 68:1–8CrossRefGoogle Scholar
  49. Kurepin LV, Pharis RP, Emery RJN, Reid DM, Chinnappa CC (2015) Phenotypic plasticity of sun and shade ecotypes of Stellaria longipes in response to light quality signaling, gibberellins and auxin. Plant Physiol Biochem 94:174–180CrossRefGoogle Scholar
  50. Kurepin LV, Farrow S, Walton LJ, Emery RJN, Pharis RP, Chinnappa CC (2012b) Phenotypic plasticity of sun and shade ecotypes of Stellaria longipes in response to light quality signaling: Cytokinins. Environ Exp Bot 84:25–32CrossRefGoogle Scholar
  51. Kurepin LV, Pharis RP, Reid DM, Chinnappa CC (2006a) Involvement of gibberellins in the stem elongation of sun and shade ecotypes of Stellaria longipes that is induced by low light irradiance. Plant Cell Environ 29:1319–1328Google Scholar
  52. Kurepin LV, Walton LJ, Reid DM, Pharis RP, Chinnappa CC (2006b) Growth and ethylene evolution by shade and sun ecotypes of Stellaria longipes in response to varied light quality and irradiance. Plant Cell Environ 29:647–652Google Scholar
  53. Lee M-J, Son JE, Oh M-M (2013) Growth and phenolic content of sowthistle grown in a closed-type plant production system with a UV-A or UV-B lamp. Hort Environ Biotechnol 54:492–500CrossRefGoogle Scholar
  54. Li AM, Li SH, Wu XJ, Zhang J, He AN, Zhao G, Yang X (2016) Effect of light intensity on leaf photosynthetic characteristics and accumulation of flavonoids in Lithocarpus litseifolius (Hance) Chun. (Fagaceae). Open J Forestry 6:445–459. doi: 10.4236/ojf.2016.65034CrossRefGoogle Scholar
  55. Liu Y, Song L, Yu W, Hu Y, Ma X, Wu J, Ying Y (2015) Light quality modifies camptothecin production and gene expression of biosynthesis in Camptotheca acuminata Decne seedlings. Ind Crops Prod 66:137–143CrossRefGoogle Scholar
  56. Liu Y, Zhong Z-C (2009) Interactive effects of α-NAA and UV-B radiation on the endogenous hormone contents and growth of Trichosanthes kirilowii Maxim seedlings. Acta Ecol Sin 29:244–248CrossRefGoogle Scholar
  57. Matos FS, Wolfgramm R, Gonçalves FV, Cavatte PC, Ventrella MC, DaMatta FM (2009) Phenotypic plasticity in response to light in the coffee tree. Environ Exp Bot 67:421–427CrossRefGoogle Scholar
  58. Miehe-Steier A, Roscher C, Reichelt M, Gershenzon J, Unsicker SB (2015) Light and nutrient dependent responses in secondary metabolites of Plantago lanceolata offspring are due to phenotypic plasticity in experimental grasslands. PLoS One 10:e0136073. doi: 10.1371/journal.pone.0136073CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nadeau F, Gaudreau A, Angers P, Arul J (2012) Changes in the level of glucosinolates in broccoli florets (Brassica oleracea var. Italica) during storage following postharvest treatment with UV-C. Acta Hort 945:145–148. doi: 10.17660/ActaHortic.2012.945.19CrossRefGoogle Scholar
  60. Nascimento LBDS, Leal-Costa MV, Menezes EA, Lopes VR, Muzitano MF, Costa SS, Tavares ES (2015) Ultraviolet-B radiation effects on phenolic profile and flavonoid content of Kalanchoe pinnata. J Photochem Photobiol B 148:73–81CrossRefGoogle Scholar
  61. Ning W, Peng X, Ma L, Cui L, Lu X, Wang J, Tian J, Li X, Wang W, Zhang L (2012) Enhanced secondary metabolites production and antioxidant activity in postharvest Lonicera japonica Thunb. In response to UV radiation. Innovative Food Sci Emerg Technol 13:231–243CrossRefGoogle Scholar
  62. O’Brien JA, Benkova E (2013) Cytokinin cross-talking during biotic and abiotic stress responses. Front Plant Sci 4:451. doi: 10.3389/fpls.2013.00451CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pan WS, Zheng LP, Tian H, Li WY, Wang JW (2014) Transcriptome responses involved in artemisinin production in Artemisia annua L. under UV-B radiation. J Photochem Photobiol B 140:292–300CrossRefGoogle Scholar
  64. Pandey N, Pandey-Rai S (2014) Short term UV-B radiation-mediated transcriptional responses and altered secondary metabolism of in vitro propagated plantlets of Artemisia annua L. Plant Cell Tissue Org Cult 116:371–385. doi: 10.1007/s11240-013-0413-0CrossRefGoogle Scholar
  65. Park Y, Runkle ES (2017) Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environ Exp Bot 136:41–49CrossRefGoogle Scholar
  66. Peebles CAM, Shanks JV, San K-Y (2009) The role of the octadecanoid pathway in the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots under normal and UV-B stress conditions. Biotechnol Bioeng 103:1248–1254CrossRefGoogle Scholar
  67. Podyma W, Bączek K, Angielczyk M, Przybył JL, Węglarz Z (2010) The influence of shading on the yield and quality of southern sweet-grass (Hierochloë australis (Schrad.) Roem. & Schult.) raw material. Herba Polonica 56:14–19Google Scholar
  68. Procko C, Crenshaw CM, Ljung K, Noel JP, Chory J (2014) Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa. Plant Physiol 165:1285–1301CrossRefGoogle Scholar
  69. Qaderi MM, Godin VJ, Reid DM (2015) Single and combined effects of temperature and red:far-red light ratio on evening primrose (Oenothera biennis). Botany 93:475–483. doi: 10.1139/cjb-2014-0194CrossRefGoogle Scholar
  70. Radyukina NL, Shashukova AV, Mapelli S, Shevyakova NI, Kuznetsov VV (2010) Proline controls the level of polyamines in common sage plants under normal conditions and at UV-B irradiation. Russ J Plant Physiol 57:422–429CrossRefGoogle Scholar
  71. Rai R, RP Meena, Smita SS, Shukla A, Rai SK, Pandey-Rai S (2011) UV-B and UV-C pre-treatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L.—an antimalarial plant. J Photochem Photobiol B 105:216–225CrossRefGoogle Scholar
  72. Reifenrath K, Müller C (2007) Species-specific and leaf-age dependent effects of ultraviolet radiation on two Brassicaceae. Phytochem 68:875–885CrossRefGoogle Scholar
  73. Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338CrossRefGoogle Scholar
  74. Ruberti I, Sessa G, Ciolfi A, Possenti M, Carabelli M, Morelli G (2012) Plant adaptation to dynamically changing environment: the shade avoidance response. Biotechnol Adv 30:1047–1058CrossRefGoogle Scholar
  75. Saito K (2001) A new technique for reddening florets: UV-light irradiation on saffron thistle (Carthamus tinctorius L.) flowers. LWT—Food Sci Technol 34:111–112Google Scholar
  76. Samanta A, Das G, Das SK (2011) Roles of flavonoids in plants. Int J Pharm Sci Tech 6:12–35Google Scholar
  77. Sangtarash MH, Qaderi MM, Chinnappa CC, Reid DM (2009) Differential responses of two Stellaria longipes ecotypes to ultraviolet-B radiation and droughtstress. Flora 204:593–603CrossRefGoogle Scholar
  78. Semerdjieva SI, Sheffield E, Phoenix GK, Gwynn-Jones D, Callaghan TV, Johnson GN (2003) Contrasting strategies for UV-B screening in sub-Arctic dwarf shrubs. Plant Cell Environ 26:957–964CrossRefGoogle Scholar
  79. Solhaug KA, Gauslaa Y, Nybakken L, Bilger W (2003) UV-induction of sun-screening pigments in lichens. New Phytol 158:91–100CrossRefGoogle Scholar
  80. Song R, Kelman D, Johns KL, Wright AD (2012) Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii. Food Chem 133:707–714CrossRefGoogle Scholar
  81. Spitaler R, Schlorhaufer PD, Ellmerer EP, Merfort I, Bortenschlager S, Stuppner H, Zidorn C (2006) Altitudinal variation of secondary metabolite profiles in flowering heads of Arnica montana cv. ARBO. Phytochem 67:409–417Google Scholar
  82. Sun M, Gu X, Fu H, Zhang L, Chen R, Cui L, Zheng L, Zhang D, Tian J (2010) Change of secondary metabolites in leaves of Ginkgo biloba L. in response to UV-B induction. Innov Food Sci and Emerg Technol 11:672–676CrossRefGoogle Scholar
  83. Todorova D, Katerova Z, Sergiev I, Alexieva V (2014) Polyamines–involvement in plant tolerance and adaptation to stress. In: Anjum A, Gill SS, Gill R (eds) Plant adaptation to environmental changes. Significance of amino acids and their derivatives. CABI, UK, pp 194–221Google Scholar
  84. Tossi V, Cassia R, Bruzzone S, Zocchi E, Lamattina L (2012) ABA says NO to UV-B: a universal response? Trends Plant Sci 17:510–517CrossRefGoogle Scholar
  85. Vanhaelewyn L, Prinsen E, Van Der Straeten D, Vandenbussche F (2016) Hormone-controlled UV-B responses in plants. J Exp Bot 67:4469–4482CrossRefGoogle Scholar
  86. Vass I, Szilárd A, Sicora C (2005) Adverse effects of UV-B light on the structure and function of the photosynthetic apparatus. In: Pessarakli M (ed) Handbook of photosynthesis, 2nd edn. CRC Press, pp 827–43. doi: 10.1201/9781420027877.ch43CrossRefGoogle Scholar
  87. Verdaguer D, Jansen MAK, Llorens L, Morales LO, Neugart S (2017) UV-A radiation effects on higher plants: exploring the known unknown. Plant Sci 255:72–81CrossRefGoogle Scholar
  88. Victório CP, Leal-Costa MV, Tavares ES, Kuster RM, Salgueiro Lage CL (2011) Effects of Supplemental UV-A on the development, anatomy and metabolite production of Phyllanthus tenellus Cultured In Vitro. Photochem Photobiol 87:685–689CrossRefGoogle Scholar
  89. Wang CH, Zheng LP, Tian H, Wang JW (2016) Synergistic effects of ultraviolet-B and methyl jasmonate on tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. J Photochem Photobiol B 159:93–100CrossRefGoogle Scholar
  90. Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176CrossRefGoogle Scholar
  91. Wijesinghe WAJP, Jeon Y-J (2011) Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: a review. Phytochem Rev 10:431–443CrossRefGoogle Scholar
  92. Xenophontos M, Stavropoulos I, Avramakis E, Navakoudis E, Dörnemann D, Kotzabasis K (2008) Influence of the habitat altitude on the (proto)hypericin and (proto)pseudohypericin levels of Hypericum plants from Crete. Planta Med 74:1496–1503CrossRefGoogle Scholar
  93. Zhang LX, Guo QS, Chang QS, Zhu ZB, Liu L, Chen YH (2015) Chloroplast ultrastructure, photosynthesis and accumulation of secondary metabolites in Glechoma longituba in response to irradiance. Photosynthetica 53:144–153. doi: 10.1007/s11099-015-0092-7CrossRefGoogle Scholar
  94. Zhang WJ, Björn LO (2009) The effect of ultraviolet radiation on the accumulation of medicinal compounds in plants. Fitoterapia 80:207–218CrossRefGoogle Scholar
  95. Zhao D, Hao Z, Tao J (2012) Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.). Plant Physiol Biochem 61:187–196CrossRefGoogle Scholar
  96. Zhou R, Su WH, Zhang GF, Zhang YN, Guo XR (2016) Relationship between flavonoids and photoprotection in shade-developed Erigeron breviscapus transferred to sunlight. Photosynthetica 54:201–209CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Zornitsa Katerova
    • 1
  • Dessislava Todorova
    • 1
  • Iskren Sergiev
    • 1
  1. 1.Institute of Plant Physiology and GeneticsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations