Lignocellulosic Fibres Reinforced Thermoset Composites: Preparation, Characterization, Mechanical and Rheological Properties

  • Hind Abdellaoui
  • Rachid BouhfidEmail author
  • Abou El Kacem Qaiss
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Due to the biodegradability, renewability and important specific properties, the lignocellulosic fibres become a celebrity in the composite materials fields. This interest is essentially forms elements of the strategic outline of sustainable development and environmental respect. In this context, this chapter is obviously focused on thermoset composites reinforced by lignocellulosic fibres. We present in this chapter the different thermoset matrices and a deep depiction of lignocellulosic fibres from their morphological structures to their mechanical properties. Then, we present a review of the largest part of an eloquent work of literature that have paid attention to the exploration of the mechanical and rheological properties of composite lignocellulosic fibres and realm of application of this new category of materials.


Lignocellulosic fibers Composite Thermoset Mechanical Rheological Biodigradability 


  1. Abdellaoui H, Echaabi J (2014) Rheological models for modeling the viscoelastic behavior in liquid composite molding processes (LCM) review. J Reinf Plast Compos 33:714–732CrossRefGoogle Scholar
  2. Abdellaoui H, Bensalah H et al (2015a) Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin. J Mater 68:104–113CrossRefGoogle Scholar
  3. Abdellaoui H, Bouhfid R et al (2015b) Experimental and modeling study of viscoelastic behaviour of woven dried jute under compressive stress. J Reinf Plast Compos 34:405–420CrossRefGoogle Scholar
  4. Abdelmouleh M, Boufi S et al (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci and Technol 67:1627–1639CrossRefGoogle Scholar
  5. Albano C, Gonzalez J et al (1999) Thermal stability of blends of polyolefins and sisal fiber. J Polymer Degrad Stab 66:179–190CrossRefGoogle Scholar
  6. Alves C, Ferrão PMC, Silva AG et al (2010) Ecodesign of automotive components making use of natural jute fiber composites. J Clean Prod 18:313–327CrossRefGoogle Scholar
  7. Amaducci S, Zatta A et al (2008) Influence of agronomic factors on yield and quality of hemp (Cannabis sativa L.) fibre and implication for an innovative production system. F Crop Res 107:161–169CrossRefGoogle Scholar
  8. Basu G, De SS, Samanta AK (2009) Effect of bio-friendly conditioning agents on jute fibre spinning. Ind Crops Prod 29:281–288CrossRefGoogle Scholar
  9. Beg MDH (2007) The improvement of interfacial bonding, weathering and recycling of wood fibre reinforced polypropylene composites. Doctoral thesis, University of Waikato, Hamilton, New ZealandGoogle Scholar
  10. Ben Brahim S, Ben Cheikh R (2007) Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos Sci Technol 67(1):140–147CrossRefGoogle Scholar
  11. Bessadok A, Marais S et al (2007) Effect of chemical treatments of Alfa (Stipa tenacissima) fibres on water-sorption properties. Compos Sci Technol 67:685–697CrossRefGoogle Scholar
  12. Bickerton S, Abdullah MZ (2003) Modeling and evaluation of the filling stage of injection/compression moulding. Compos Sci Technol 63:1359–1375CrossRefGoogle Scholar
  13. Bodros E, Pillin I et al (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67:462–470CrossRefGoogle Scholar
  14. Charlet K, Baley C et al (2007) Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Compos Part A Appl Sci. Manuf 38:1912–1921CrossRefGoogle Scholar
  15. Charlet K, Jernot JP et al (2010) Scattering of morphological and mechanical properties of flax fibres. Ind Crops Prod 32:220–224CrossRefGoogle Scholar
  16. Corrales F, Vilaseca F et al (2007) Chemical modification of jute fibers for the production of green-composites. J Hazard Mater 144(3):730–735CrossRefGoogle Scholar
  17. Defoirdt D, Biswas S et al (2010) Assessment of the tensile properties of coir, bamboo and jute fibre. Compos Part A Appl Sci Manuf 41:588–595CrossRefGoogle Scholar
  18. Deleglise M, Binetruy C et al (2006) Simulation of LCM processes involving induced or forced deformations. Compos Part A Appl Sci Manuf 37:874–880CrossRefGoogle Scholar
  19. Essabir H, Bensalah MO et al (2014) Fabrication and characterization of apricot shells particles reinforced high density polyethylene based bio-composites: mechanical and thermal properties. J Biobased Mater Bioenergy 8:344–351CrossRefGoogle Scholar
  20. Gassan J, Bledzki AK (1999) Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. J. Compos Sci Technol 59:1303–1309CrossRefGoogle Scholar
  21. Gilberto S, Bras J, Dufresne A (2010) Cellulosic Bionanocomposites: a review of preparation, properties and applications. Polym J 2:728–765Google Scholar
  22. Gopinath A, Kumar S, Elayaperumal A (2014) Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices. Proced engin 97:2052–2063CrossRefGoogle Scholar
  23. Han N, Suh S et al (2003) Resin film infusion of stitched stiffened composite panels. Compos Part A Appl Sci Manuf 34:227–236CrossRefGoogle Scholar
  24. Harish S, Michael DP et al (2009) Mechanical property evaluation of natural fiber coir composite. Mater Charact 60:44–49CrossRefGoogle Scholar
  25. Jawaid M, Abdul Khalil HPS, Abu Bakar A (2010) Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites. Mater Sci Eng, A 527:7944–7949CrossRefGoogle Scholar
  26. Jawaid M, Abdul Khalil HPS, Abu Bakar A (2011) Woven hybrid composites: Tensile and flexural properties of oil palm-woven jute fibres based epoxy composites. Mater Sci Eng A 528:5190–5195CrossRefGoogle Scholar
  27. Jeong E, Lim JW et al (2011) Effects of physicochemical treatments of illite on the thermo-mechanical properties and thermal stability of illite/epoxy composites. J Ind Eng Chem 17:77–82CrossRefGoogle Scholar
  28. John M, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364CrossRefGoogle Scholar
  29. Kelly P, Bickerton S (2009) A comprehensive filling and tooling force analysis for rigid mould LCM processes. Compos Part A Appl Sci Manuf 40:1685–1697CrossRefGoogle Scholar
  30. Khan MA, Ganster J et al (2009) Hybrid composites of jute and man-made cellulose fibers with polypropylene by injection moulding. Compos Part A Appl Sci Manuf 40:846–851CrossRefGoogle Scholar
  31. Kim JT, Netravali AN (2010) Mercerization of sisal fibers: effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Compos Part A Appl Sci Manuf 41:1245–1252CrossRefGoogle Scholar
  32. Le Duigou A, Davies P et al (2010) Interfacial bonding of Flax fibre/Poly(l-lactide) bio-composites. Compos Sci Technol 70:231–239CrossRefGoogle Scholar
  33. Le Riche R, Saouab A, Bréard J (2003) Coupled compression RTM and composite layup optimization. Compos Sci Technol 63:2277–2287CrossRefGoogle Scholar
  34. Loan DTT (2006) Iinvestigation on jute fibres and their composites based on polypropylene and epoxy matrices. Doctoral thesis, Dresden university, GermanGoogle Scholar
  35. Lucas N, Bienaime C, Belloy C et al (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73:429–442CrossRefGoogle Scholar
  36. Malha M, Nekhlaoui S et al (2013) Mechanical and thermal properties of compatibilized polypropylene reinforced by woven doum. J Appl Polym Sci 130:4347–4356Google Scholar
  37. Megiatto JD, Silva CG et al (2009) Thermoset matrix reinforced with sisal fibers: Effect of the cure cycle on the properties of the biobased composite. Polym Test 28:793–800CrossRefGoogle Scholar
  38. Mir A, Zitoune R et al (2009) Caractérisation mécanique et thermomécanique d’un stratifié Jute/époxy Mechanical and thermomechanical characterization of jute/epoxy laminate, proceedings of the JNC 16, Toulouse, 2009Google Scholar
  39. Mishra V, Biswas S (2013) Physical mechanical properties of bi-directional jute fiber epoxy composites. J Proced Engin 51:561–566CrossRefGoogle Scholar
  40. Mishra S, Mohanty AK et al (2003) Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Compos Sci Technol 63:1377–1385CrossRefGoogle Scholar
  41. Mwaikambo LW, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234CrossRefGoogle Scholar
  42. Park J, Kang MK (2003) A numerical simulation of the resin film infusion process. Compos Struct 60:431–437CrossRefGoogle Scholar
  43. Pizzi A, Kueny K et al (2009) High resin content natural matrix–natural fibre biocomposites. Ind Crops Prod 30:235–240CrossRefGoogle Scholar
  44. Rana AK, Basak RK, Mitra C et al (1997) Studies of Acetylation of jute using simplified procedure and its characterization. J Appl Polym Sci 64(8):1517–1523CrossRefGoogle Scholar
  45. Ray D, Sarkar BK et al (2001) The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres. Compos Part A 32:119–127CrossRefGoogle Scholar
  46. Ray D, Sarkar BK et al (2002) Dynamic mechanical and thermal analysis of vinylester resin matrix composites reinforced with untreated and treated jute fibres. Compos Sci Technol 62:911–917CrossRefGoogle Scholar
  47. Regional centre of animation in advanced materials (2004) Glossary of composite materialsGoogle Scholar
  48. Regional centre of animation in advanced materials (2006) Glossaire des matériaux composites renforcés de fibres d’origine renouvelableGoogle Scholar
  49. Rout J, Misra M, Tripathy SS et al (2001) The influence of fibre treatment on the performance of coir-polyester composites. Compos Sci technol 61:1303–1310CrossRefGoogle Scholar
  50. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18:351–363CrossRefGoogle Scholar
  51. Sangthong S, Pongprayoon T, Yanumet N (2009) Mechanical property improvement of unsaturated polyester composite reinforced with admicellar-treated sisal fibers. Compos Part A Appl Sci Manuf 40:687–694CrossRefGoogle Scholar
  52. Sarkar P, Modak N et al (2015) Reciprocationg friction behavior of Al Particulate glass fiber reinforced epoxy composite. Mater Today 2:2708–2717CrossRefGoogle Scholar
  53. Seki S (2009) Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites. Mater Sci Eng A 508:247–252CrossRefGoogle Scholar
  54. Silva FDA, Chawla N et al (2008) Tensile behavior of high performance natural (sisal) fibers. Compos Sci Technol 68:3438–3443CrossRefGoogle Scholar
  55. Singh B, Gupta M (2005) Natural fiber composites for building applications. Natural fibres, biopolymers, and biocomposites. Taylor & Francis, United strates of America, pp 261–290Google Scholar
  56. Singh S, Mohanty AK et al (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos Part A Appl Sci Manuf 39:875–886CrossRefGoogle Scholar
  57. Sood M, Dharmpal D, Gupta VK (2015) Effect of fiber chemical treatment on mechanical properties of sisal fiber/recycled HDPE composite. Mater Today 2:3149–3155CrossRefGoogle Scholar
  58. Stocchi A, Lauke B et al (2007) A novel fiber treatment applied to woven jute fabric/vinylester laminates. Compos Part A Appl Sci Manuf 38:1337–1343CrossRefGoogle Scholar
  59. Umer R, Bickerton S et al (2011) The effect of yarn length and diameter on permeability and compaction response of flax fibre mats. Compos Part A Appl Sci Manuf 42(7):723–732CrossRefGoogle Scholar
  60. Vilaplana F, Strömberg E et al (2010) Environmental and resource aspects of sustainable biocomposites. Polym Degrad Stab 95:2147–2161CrossRefGoogle Scholar
  61. WinklerPrins AMG (2006) Jute cultivation in the Lower Amazon, 1940–1990: an ethnographic account from Santarém, Pará, Brazil. J Hist. Geogr 32:818–838CrossRefGoogle Scholar
  62. Xie Y, Hill CAS et al (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41:806–819CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Hind Abdellaoui
    • 1
  • Rachid Bouhfid
    • 1
    Email author
  • Abou El Kacem Qaiss
    • 1
  1. 1.Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Laboratory of Polymer ProcessingInstitute of Nanomaterials and NanotechnologyRabatMorocco

Personalised recommendations