Transforming Timing Requirements into CCSL Constraints to Verify Cyber-Physical Systems

  • Xiaohong Chen
  • Ling Yin
  • Yijun Yu
  • Zhi Jin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10610)


The timing requirements of embedded cyber-physical systems (CPS) constrain CPS behaviors made by scheduling analysis. Lack of physical entity properties modeling and the need of scheduling analysis require a systematic approach to specify timing requirements of CPS at the early phase of requirements engineering. In this work, we extend the Problem Frames notations to capture timing properties of both cyber and physical domain entities into Clock Constraint Specification Language (CCSL) constraints which is more explicit that LTL for scheduling analysis. Interpreting them using operational semantics as finite state machines, we are able to transform these timing requirements into CCSL scheduling constraints, and verify their consistency on NuSMV. Our TimePF tool-supported approach is illustrated through the verification of timing requirements for a representative problem in embedded CPS.


Cyber-physical systems Problem Frames Timing requirements CCSL constraints 



This work was supported by the Natural Science Foundation of China under grant 61620106007 and 61472140, Microsoft Azure Award, British Council Researcher Links on Cybersecurity ERC Adaptive Security And Privacy 291652.


  1. 1.
    Lee, E.: Cyber physical systems: design challenges. In: International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC2008), pp. 363–369 (2008)Google Scholar
  2. 2.
    Ying, T., Goddard, S., Perez, L.C.: A prototype architecture for cyber-physical systems. ACM SIGBED Rev. (2008)Google Scholar
  3. 3.
    Jackson, M.: The meaning of requirements. Ann. Softw. Eng. 3, 5–21 (1997)CrossRefGoogle Scholar
  4. 4.
    Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In: Fm, T. (ed.) Proceedings of the 5th IEEE International Symposium on Requirements Engineering (RE 2001), pp. 249–263. IEEE Computer Society, Toronto (2001)Google Scholar
  5. 5.
    Jackson, M., Frames, P.: Analyzing and Structuring Software Development Problems. Addison-Wesley, New York (2001)Google Scholar
  6. 6.
    Choppy, C., Reggio, G.: A UML-based method for the commanded behaviour frame. In: Cox, K., Hall, J., Rapanotti, L. (eds.) Proceedings of the 1st International Workshop on Advances and Applications of Problem Frames (IWAAPF 2004), pp. 27–34 (2004)Google Scholar
  7. 7.
    Barroca, L., Fiadeiro, J., Jackson, M., Laney, R., Nuseibeh, B.: Problem frames: a case for coordination. In: Rocco, D.N., Gianluigi, F., Greg, M. (eds.) Proceedings of the 6th International Conference on Coordination Models and Languages, pp. 5–19 (2004)Google Scholar
  8. 8.
    Chen, X., Liu, J., Mallet, F., Jin, Z.: Modeling timing requirements in problem frames using CCSL. In: the 18th Asia-Pacific Software Engineering Conference (APSEC 2011), pp. 381–388 (2011)Google Scholar
  9. 9.
    Andre, C.: Syntax and semantics of the clock constraint speci?cation language (CCSL). INRIA, Research report (2009)Google Scholar
  10. 10.
    Yin, L., Liu, J., Ding, Z., Mallet, F., de Simone, R.: Schedulability analysis with CCSL specifications. In: APSEC, pp. 414–421 (2013)Google Scholar
  11. 11.
  12. 12.
    Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 7, 558–565 (1978)CrossRefzbMATHGoogle Scholar
  13. 13.
    Chen, X., Jin, Z.: Capturing software requirements from the expected interactions between the software and its environment: an ontology based approach. Int. J. Software Eng. Knowl. Eng. 26(1), 15–39 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, Y., Chen, X., Yin, L.: TimePF: a tool for modeling and verifying timing requirements based on problem frames. Requirements Engineering in the Big Data Era. CCIS, vol. 558, pp. 149–154. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48634-4_11 CrossRefGoogle Scholar
  15. 15.
    Chen, X., Yin, B., Jin, Z.: DPtool: a tool for guiding the problem description and the problem projection. In: The 18th IEEE International Requirements Engineering Conference, pp. 401–402 (2010)Google Scholar
  16. 16.
    OMG, UML Profile for Schedulability, Performance, and Time Specification, v1.1, Object Management Group, formal/05-01-02, January 2005Google Scholar
  17. 17.
    OMG, UML Profile for MARTE, v1.1, June 2011Google Scholar
  18. 18.
    Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis, Design. The MK/OMG Press, Burlington (2008)zbMATHGoogle Scholar
  19. 19.
    Selic, B., Gerard, S.: Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE. Elsevier, Amsterdam (2013)Google Scholar
  20. 20.
    Mallet, F.: MARTE/CCSL for modeling cyber-physical systems. In: Drechsler, R., Kühne, U. (eds.) Formal Modeling and Verification of Cyber-Physical Systems, pp. 26–49. Springer, Wiesbaden (2015). doi: 10.1007/978-3-658-09994-7_2 CrossRefGoogle Scholar
  21. 21.
    Lamsweerde, A.: Formal refinement patterns for goal-driven requirements elaboration. In: Proceedings of the 4th ACM Symposium on the Foundations of Software Engineering (FSE4), San Francisco, USA, pp. 179–190 (1996)Google Scholar
  22. 22.
    Yu, E.: Agent orientation as a modeling paradigm. Wirtschaftsinformatik 43(2), 123–132 (2001)CrossRefGoogle Scholar
  23. 23.
    Yu, E.: Modelling organizations for information systems requirements engineering. In: Proceedings of First IEEE Symposium on Requirements Engineering, pp. 34–41 (1993)Google Scholar
  24. 24.
    Bois, P.: The albert ii language - on the design and the use of a formal specification language for requirements analysis. Ph.D. dissertation, Department of Computer Science, University of Namur, Namur, Belgium (1995)Google Scholar
  25. 25.
    Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In: ICSE 1995, pp. 15–24 (1995)Google Scholar
  26. 26.
    Lavazza, L., Del Bianco, V.: Combining problem frames and UML in the description of software requirements. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 199–213. Springer, Heidelberg (2006). doi: 10.1007/11693017_16 CrossRefGoogle Scholar
  27. 27.
    Li, Z., Hall, J.G., Rapanotti, L.: On the systematic transformation of requirements to specifications. Requirements Eng. J. 19(4), 397–419 (2014)CrossRefGoogle Scholar
  28. 28.
    Gascon, R., Mallet, F., DeAntoni, J.: Logical time and temporal logics: comparing UML MARTE/CCSL and PSL. In: TIME 2011, pp. 141–148 (2011)Google Scholar
  29. 29.
    Zhang, M., Mallet, F., Zhu, H.: An SMT-based approach to the formal analysis of MARTE/CCSL. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol. 10009, pp. 433–449. Springer, Cham (2016). doi: 10.1007/978-3-319-47846-3_27 CrossRefGoogle Scholar
  30. 30.
    Suryadevara, J., Seceleanu, C., Mallet, F., Pettersson, P.: Verifying MARTE/CCSL mode behaviors using UPPAAL. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 1–15. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40561-7_1 CrossRefGoogle Scholar
  31. 31.
    Khan, A.M., Rashid, M.: Generation of SystemVerilog observers from SysML and MARTE/CCSL. In: ISORC 2016, pp. 61–68 (2016)Google Scholar
  32. 32.
    Peters, J., Przigoda, N., Wille, R., Drechsler, R.: Clocks vs. instants relations: Verifying CCSL time constraints in uml/marte models. In: MEMOCODE 2016, pp. 78–84 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Trustworthy ComputingEast China Normal UniversityShanghaiChina
  2. 2.Shanghai University of Engineering ScienceShanghaiChina
  3. 3.School of Computing and CommunicationsThe Open UniversityMilton KeynesUK
  4. 4.Key Laboratory of High Confidence Software Technologies, Ministry of Education, Institute of Software, School of EE & CSPeking UniversityBeijingChina

Personalised recommendations