Exploring Design Alternatives for RAMP Transactions Through Statistical Model Checking

  • Si Liu
  • Peter Csaba Ölveczky
  • Jatin Ganhotra
  • Indranil Gupta
  • José Meseguer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10610)


Arriving at a mature distributed system design through implementation and experimental validation is a labor-intensive task. This limits the number of design alternatives that can be explored in practice. In this work we use formal modeling with probabilistic rewrite rules and statistical model checking to explore and extend the design space of the RAMP (Read Atomic Multi-Partition) transaction system for large-scale partitioned data stores. Specifically, we formally model in Maude eight RAMP designs, only two of which were previously implemented and evaluated by the RAMP developers; and we analyze their key consistency and performance properties by statistical model checking. Our results: (i) are consistent with the experimental evaluations of the two implemented designs; (ii) are also consistent with conjectures made by the RAMP developers for other unimplemented designs; and (iii) uncover some promising new designs that seem attractive for some applications.



We thank the anonymous reviewers for helpful comments on a previous version of this paper. This work was partially supported by NSF CNS 1409416, AFOSR/AFRL FA8750-11-2-0084, and NSF CNS 1319527.


  1. 1.
  2. 2.
  3. 3.
    Agha, G.A., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language for probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2), 213–239 (2006)CrossRefGoogle Scholar
  4. 4.
    AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and quantitative analysis tool. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22944-2_28 CrossRefGoogle Scholar
  5. 5.
    Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Scalable atomic visibility with RAMP transactions. ACM Trans. Database Syst. 41(3) (2016)Google Scholar
  6. 6.
    Bailis, P., Fekete, A., Hellerstein, J.M., Ghodsi, A., Stoica, I.: Scalable atomic visibility with RAMP transactions. In: Proceedings SIGMOD 2014. ACM (2014)Google Scholar
  7. 7.
    Barbierato, E., Gribaudo, M., Iacono, M.: Performance evaluation of NoSQL big-data applications using multi-formalism models. Future Gen. Comp. Syst. 37, 345–353 (2014)CrossRefGoogle Scholar
  8. 8.
    Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers in the wild. In: IMC, pp. 267–280 (2010)Google Scholar
  9. 9.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  10. 10.
    Gandini, A., Gribaudo, M., Knottenbelt, W.J., Osman, R., Piazzolla, P.: Performance evaluation of NoSQL databases. In: Horváth, A., Wolter, K. (eds.) EPEW 2014. LNCS, vol. 8721, pp. 16–29. Springer, Cham (2014). doi: 10.1007/978-3-319-10885-8_2 Google Scholar
  11. 11.
    Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s Megastore in Real-Time Maude. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 494–519. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54624-2_25 CrossRefGoogle Scholar
  12. 12.
    Grov, J., Ölveczky, P.C.: Increasing consistency in multi-site data stores: Megastore-CGC and its formal analysis. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 159–174. Springer, Cham (2014). doi: 10.1007/978-3-319-10431-7_12 Google Scholar
  13. 13.
    Liu, S., Ganhotra, J., Rahman, M., Nguyen, S., Gupta, I., Meseguer, J.: Quantitative analysis of consistency in NoSQL key-value stores. Leibniz Trans. Embed. Syst. 4(1), 031–0326 (2017)Google Scholar
  14. 14.
    Liu, S., Ölveczky, P.C., Ganhotra, J., Gupta, I., Meseguer, J.: Exploring design alternatives for RAMP transactions through statistical model checking. Technical report (2017).
  15. 15.
    Liu, S., Ölveczky, P.C., Rahman, M.R., Ganhotra, J., Gupta, I., Meseguer, J.: Formal modeling and analysis of RAMP transaction systems. In: SAC. ACM (2016)Google Scholar
  16. 16.
    Liu, S., Rahman, M.R., Skeirik, S., Gupta, I., Meseguer, J.: Formal modeling and analysis of Cassandra in Maude. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 332–347. Springer, Cham (2014). doi: 10.1007/978-3-319-11737-9_22 Google Scholar
  17. 17.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96(1), 73–155 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 266–280. Springer, Heidelberg (2005). doi: 10.1007/11513988_26 CrossRefGoogle Scholar
  19. 19.
    Sen, K., Viswanathan, M., Agha, G.A.: VESTA: a statistical model-checker and analyzer for probabilistic systems. In: QEST 2005. IEEE Computer Society (2005)Google Scholar
  20. 20.
    Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Si Liu
    • 1
  • Peter Csaba Ölveczky
    • 1
    • 2
  • Jatin Ganhotra
    • 3
  • Indranil Gupta
    • 1
  • José Meseguer
    • 1
  1. 1.University of IllinoisUrbana-ChampaignUSA
  2. 2.University of OsloOsloNorway
  3. 3.IBM ResearchNew YorkUSA

Personalised recommendations