Classification-Based Parameter Synthesis for Parametric Timed Automata

  • Jiaying LiEmail author
  • Jun Sun
  • Bo Gao
  • Étienne André
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10610)


Parametric timed automata are designed to model timed systems with unknown parameters, often representing design uncertainties of external environments. In order to design a robust system, it is crucial to synthesize constraints on the parameters, which guarantee the system behaves according to certain properties. Existing approaches suffer from scalability issues. In this work, we propose to enhance existing approaches through classification-based learning. We sample multiple concrete values for parameters and model check the corresponding non-parametric models. Based on the checking results, we form conjectures on the constraint through classification techniques, which can be subsequently confirmed by existing model checkers for parametric timed automata. In order to limit the number of model checker invocations, we actively identify informative parameter values so as to help the classification converge quickly. We have implemented a prototype and evaluated our idea on 24 benchmark systems. The result shows our approach can synthesize parameter constraints effectively and thus improve parametric verification.



This work is supported by NRF project “RG101NR0114A” and partially supported by the ANR national research program “PACS”(ANR-14-CE28-0002).


  1. 1.
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Proceedings of the 25th annual ACM symposium on Theory of Computing, pp. 592–601. ACM (1993)Google Scholar
  4. 4.
    André, É., Fribourg, L.: Behavioral Cartography of Timed Automata. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 76–90. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15349-5_5 CrossRefGoogle Scholar
  5. 5.
    André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32759-9_6 CrossRefGoogle Scholar
  6. 6.
    André, É., Lin, S.-W.: Learning-based compositional parameter synthesis for event-recording automata. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS, vol. 10321, pp. 17–32. Springer, Cham (2017). doi: 10.1007/978-3-319-60225-7_2 CrossRefGoogle Scholar
  7. 7.
    Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. In: International Conference On Principles Of Distributed Systems, pp. 103–117 (2005)Google Scholar
  8. 8.
    Aştefănoaei, L., Bensalem, S., Bozga, M., Cheng, C.-H., Ruess, H.: Compositional parameter synthesis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 60–68. Springer, Cham (2016). doi: 10.1007/978-3-319-48989-6_4 Google Scholar
  9. 9.
    Baudrit, C., Dubois, D., Perrot, N.: Representing parametric probabilistic models tainted with imprecision. Fuzzy Sets Syst. 159(15), 1913–1928 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Developing UPPAAL over 15 years. Softw. Pract. Exper. 41(2), 133–142 (2011)CrossRefGoogle Scholar
  11. 11.
    Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: Uppaala tool suite for automatic verification of real-time systems. Hybrid Syst. 3, 232–243 (1996)Google Scholar
  12. 12.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)Google Scholar
  13. 13.
    Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with ic3. In: Formal Methods in Computer-Aided Design (FMCAD), pp. 165–168. IEEE (2013)Google Scholar
  14. 14.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)CrossRefzbMATHGoogle Scholar
  15. 15.
    Dasgupta, S.: Coarse sample complexity bounds for active learning. In: NIPS, pp. 235–242 (2005)Google Scholar
  16. 16.
    Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to parameter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78929-1_14 CrossRefGoogle Scholar
  17. 17.
    Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust framework for learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 69–87. Springer, Cham (2014). doi: 10.1007/978-3-319-08867-9_5 Google Scholar
  18. 18.
    Gilad-Bachrach, R., Navot, A., Tishby, N.: Kernel query by committee (KQBC). Technical report, Technical Report 2003–88, Leibniz Center, The Hebrew University (2003)Google Scholar
  19. 19.
    Gilad-Bachrach, R., Navot, A., Tishby, N.: Query by committee made real. In: NIPS, pp. 443–450 (2005)Google Scholar
  20. 20.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: A model checker for hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer, Heidelberg (1997). doi: 10.1007/3-540-63166-6_48 CrossRefGoogle Scholar
  21. 21.
    Huang, T.-M., Kecman, V., Kopriva, I.: Kernel Based Algorithms for Mining Huge Data Sets, vol. 1. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  22. 22.
    Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of timed automata. J. Logic Algebraic Program. 52–53, 183–220 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Jahanian, F.: Verifying properties of systems with variable timing constraints. In: Proceedings Real Time Systems Symposium, pp. 319–328. IEEE (1989)Google Scholar
  24. 24.
    Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed automata. IEEE Trans. Software Eng. 41(5), 445–461 (2015)CrossRefzbMATHGoogle Scholar
  25. 25.
    Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata. Trans. Petri Nets Other Models Concurrency 5, 141–159 (2012)CrossRefzbMATHGoogle Scholar
  26. 26.
    Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR 1994. Springer, London (1994)Google Scholar
  27. 27.
    Lovász, L., Vempala, S.: Hit-and-run is fast and fun. Microsoft Research (2003, preprint)Google Scholar
  28. 28.
    Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry, 2nd edn. The MIT Press, Cambridge (1972)zbMATHGoogle Scholar
  29. 29.
    Platt, J., et al.: Sequential minimal optimization: a fast algorithm for training support vector machines (1998)Google Scholar
  30. 30.
    Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)Google Scholar
  31. 31.
    Ruff, R.A., Dietterich, T.G.: What good are experiments? In: Proceedings of the Sixth International Workshop on Machine Learning (ML 1989), pp. 109–112 (1989)Google Scholar
  32. 32.
    Schohn, G., Cohn, D.: Less is more: active learning with support vector machines. In: ICML, pp. 839–846 (2000)Google Scholar
  33. 33.
    Settles, B.: Active learning. In: Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers (2012)Google Scholar
  34. 34.
    Sharma, R., Aiken, A.: From invariant checking to invariant inference using randomized search. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 88–105. Springer, Cham (2014). doi: 10.1007/978-3-319-08867-9_6 Google Scholar
  35. 35.
    Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learning geometric concepts. In: Static Analysis Symposium, pp. 388–411 (2013)Google Scholar
  36. 36.
    Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31424-7_11 CrossRefGoogle Scholar
  37. 37.
    Spelberg, R.L., Toetenel, H., Ammerlaan, M.: Partition refinement in real-time model checking. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 143–157. Springer, Heidelberg (1998). doi: 10.1007/BFb0055344 CrossRefGoogle Scholar
  38. 38.
    Stoelinga, M.: Fun with firewire: A comparative study of formal verification methods applied to the ieee 1394 root contention protocol. Formal Aspects Comp. 14(3), 328–337 (2003)CrossRefzbMATHGoogle Scholar
  39. 39.
    Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02658-4_59 CrossRefGoogle Scholar
  40. 40.
    Tong, S., Chang, E.Y.: Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM International Conference on Multimedia, pp. 107–118 (2001)Google Scholar
  41. 41.
    Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45–66 (2001)zbMATHGoogle Scholar
  42. 42.
    Yovine, S.: Model checking timed automata. In: Rozenberg, G., Vaandrager, F.W. (eds.) EEF School 1996. LNCS, vol. 1494, pp. 114–152. Springer, Heidelberg (1998). doi: 10.1007/3-540-65193-4_20 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Singapore University of Technology and DesignSingaporeSingapore
  2. 2.LIPN, University Paris 13VilletaneuseFrance

Personalised recommendations