A Flexible Approach for Finding Optimal Paths with Minimal Conflicts

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10610)

Abstract

Complex systems are usually modelled through a combination of structural and behavioural models, where separate behavioural models make it easier to design and understand partial behaviour. When partial models are combined, we need to guarantee that they are consistent, and several automated techniques have been developed to check this. We argue that in some cases it is impossible to guarantee total consistency, and instead we want to find execution paths across such models with minimal conflicts with respect to a certain metric of interest. We present an efficient and scalable solution to find optimal paths through a combination of the theorem prover Isabelle with the constraint solver Z3. Our approach has been inspired by a healthcare problem, namely how to detect conflicts between medications taken by patients with multiple chronic conditions, and how to find preferable alternatives automatically.

References

  1. 1.
    Araújo, J., Whittle, J., Kim, D.: Modeling and composing scenario-based requirements with aspects. In: Proceedings of the 12th IEEE International Requirements Engineering Conference, pp. 58–67. IEEE Computer Society Press (2004)Google Scholar
  2. 2.
    Bjørner, N., Phan, A.-D., Fleckenstein, L.: vZ - an optimizing SMT solver. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0_14 Google Scholar
  3. 3.
    Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of provers. In: Boogie 2011: First International Workshop on Intermediate Verification Languages, pp. 53–64 (2011)Google Scholar
  4. 4.
    Bowles, J.K.F., Bordbar, B., Alwanain, M.: A logical approach for behavioural composition of scenario-based models. In: Butler, M., Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 252–269. Springer, Cham (2015). doi: 10.1007/978-3-319-25423-4_16 CrossRefGoogle Scholar
  5. 5.
    Bowles, J., Bordbar, B.: A formal model for integrating multiple views. In: Seventh International Conference on Application of Concurrency to System Design, 2007, ACSD 2007, pp. 71–79. IEEE Computer Society Press (2007)Google Scholar
  6. 6.
    Bowles, J., Bordbar, B., Alwanain, M.: Weaving true-concurrent aspects using constraint solvers. In: Application of Concurrency to System Design (ACSD 2016). IEEE Computer Society Press, June 2016Google Scholar
  7. 7.
    Bowles, J.K.F., Caminati, M.B.: Mind the gap: addressing behavioural inconsistencies with formal methods. In: 2016 23rd Asia-Pacific Software Engineering Conference (APSEC). IEEE Computer Society (2016)Google Scholar
  8. 8.
    Boyd, C.M., Darer, J., Boult, C., Fried, L.P., Boult, L., Wu, A.W.: Clinical practice guidelines and quality of care for older patients with multiple comorbid diseases: implications for pay for performance. JAMA 294(6), 716–724 (2005)CrossRefGoogle Scholar
  9. 9.
    Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press, Cambridge (2006)Google Scholar
  10. 10.
    Jafarpour, B., Abidi, S.S.R.: Merging disease-specific clinical guidelines to handle comorbidities in a clinical decision support setting. In: Peek, N., Marín Morales, R., Peleg, M. (eds.) AIME 2013. LNCS, vol. 7885, pp. 28–32. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38326-7_5 CrossRefGoogle Scholar
  11. 11.
    Klein, J., Hélouët, L., Jézéquel, J.: Semantic-based weaving of scenarios. In: Proceedings of the 5th International Conference on Aspect-Oriented Software Development, pp. 27–38. ACM (2006)Google Scholar
  12. 12.
    Kovalov, A., Bowles, J.K.F.: Avoiding medication conflicts for patients with multimorbidities. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 376–390. Springer, Cham (2016). doi: 10.1007/978-3-319-33693-0_24 CrossRefGoogle Scholar
  13. 13.
    Liang, H., Diskin, Z., Dingel, J., Posse, E.: A general approach for scenario integration. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 204–218. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-87875-9_15 CrossRefGoogle Scholar
  14. 14.
    Lombardi, M., Milano, M., Benini, L.: Robust scheduling of task graphs under execution time uncertainty. IEEE Trans. Comput. 62(1), 98–111 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    López-Vallverdú, J.A., Riaño, D., Collado, A.: Rule-based combination of comorbid treatments for chronic diseases applied to hypertension, diabetes mellitus and heart failure. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) KR4HC/ProHealth -2012. LNCS, vol. 7738, pp. 30–41. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36438-9_2 CrossRefGoogle Scholar
  16. 16.
    Michalowski, M., Wilk, S., Michalowski, W., Lin, D., Farion, K., Mohapatra, S.: Using constraint logic programming to implement iterative actions and numerical measures during mitigation of concurrently applied clinical practice guidelines. In: Peek, N., Marín Morales, R., Peleg, M. (eds.) AIME 2013. LNCS, vol. 7885, pp. 17–22. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38326-7_3 CrossRefGoogle Scholar
  17. 17.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78800-3_24 CrossRefGoogle Scholar
  18. 18.
    Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). doi: 10.1007/3-540-45949-9 MATHGoogle Scholar
  19. 19.
    OMG: Business Process Model and Notation. Version 2.0. OMG (2011). http://www.omg.org, document id: formal/2011-01-03
  20. 20.
    OMG: UML: Superstructure. Version 2.4.1. OMG (2011). http://www.omg.org, document id: formal/2011-08-06
  21. 21.
    Piovesan, L., Molino, G., Terenziani, P.: An ontological knowledge and multiple abstraction level decision support system in healthcare. Decision Anal. 1(1), 1 (2014)Google Scholar
  22. 22.
    Reddy, R., Solberg, A., France, R., Ghosh, S.: Composing sequence models using tags. In: Proceedings of MoDELS Workshop on Aspect Oriented Modeling (2006)Google Scholar
  23. 23.
    Rubin, J., Chechik, M., Easterbrook, S.: Declarative approach for model composition. In: MiSE 2008, pp. 7–14. ACM (2008)Google Scholar
  24. 24.
    Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)CrossRefGoogle Scholar
  25. 25.
    Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from properties and scenarios. IEEE Trans. Softw. Eng. 35(3), 384–406 (2009)CrossRefGoogle Scholar
  26. 26.
    Whittle, J., Araújo, J., Moreira, A.: Composing aspect models with graph transformations. In: Proceedings of the 2006 International Workshop on Early Aspects at ICSE, pp. 59–65. ACM (2006)Google Scholar
  27. 27.
    Widl, M., Biere, A., Brosch, P., Egly, U., Heule, M., Kappel, G., Seidl, M., Tompits, H.: Guided merging of sequence diagrams. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 164–183. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36089-3_10 CrossRefGoogle Scholar
  28. 28.
    Zhang, D., Li, S., Liu, X.: An approach for model composition and verification. In: NCM 2009, pp. 1102–1107. IEEE Computer Society Press (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of St AndrewsSt AndrewsUK

Personalised recommendations