Advertisement

Relativistic Quantum Clocks

  • Maximilian P. E. LockEmail author
  • Ivette Fuentes
Chapter
Part of the Tutorials, Schools, and Workshops in the Mathematical Sciences book series (TSWMS)

Abstract

The conflict between quantum theory and the theory of relativity is exemplified in their treatment of time. We examine the ways in which their conceptions differ, and describe a semiclassical clock model combining elements of both theories. The results obtained with this clock model in flat spacetime are reviewed, and the problem of generalizing the model to curved spacetime is discussed, before briefly describing an experimental setup which could be used to test of the model. Taking an operationalist view, where time is that which is measured by a clock, we discuss the conclusions that can be drawn from these results, and what clues they contain for a full quantum relativistic theory of time.

Notes

Acknowledgements

MPEL acknowledges support from the EPSRC via the Controlled Quantum Dynamics CDT (EP/G037043/1), and IF acknowledges support from FQXi via the ‘Physics of the observer’ award ‘Quantum Observers in a Relativistic World’.

References

  1. 1.
    R. Giannitrapani, Positive-operator-valued time observable in quantum mechanics. Int. J. Theor. Phys. 36, 1575–1584 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    A. Peres, Quantum Theory: Concepts and Methods, vol. 57 (Springer, Dordrecht, 2006)zbMATHGoogle Scholar
  3. 3.
    L. Mandelstam, I. Tamm, The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (USSR) 9, 1 (1945)Google Scholar
  4. 4.
    A. Peres, Measurement of time by quantum clocks. Am. J. Phys 48, 552 (1980)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    S.L. Braunstein, C.M. Caves, G. Milburn, Generalized uncertainty relations: theory, examples, and lorentz invariance. Ann. Phys. 247, 135–173 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    W. Rindler, Relativity: Special, General, and Cosmological (Oxford University Press, Oxford, 2006)zbMATHGoogle Scholar
  7. 7.
    S. Hossenfelder, Minimal length scale scenarios for quantum gravity. Living Rev. Relativ. 16, 90 (2013)CrossRefzbMATHGoogle Scholar
  8. 8.
    H. Salecker, E. Wigner, Quantum limitations of the measurement of space-time distances. Phys. Rev. 109, 571 (1958)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    L. Burderi, T. Di Salvo, R. Iaria, Quantum clock: a critical discussion on spacetime. Phys. Rev. D 93, 064017 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Macmillan, London, 1973)Google Scholar
  11. 11.
    S.A. Fulling, Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D 7, 2850 (1973)ADSCrossRefGoogle Scholar
  12. 12.
    W.G. Unruh, Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)ADSCrossRefGoogle Scholar
  13. 13.
    G.T. Moore, Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys. 11, 2679–2691 (1970)ADSCrossRefGoogle Scholar
  14. 14.
    K. Lorek, J. Louko, A. Dragan, Ideal clocks–a convenient fiction. Classical Quantum Gravity 32, 175003 (2015)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    C.-W. Chou, D. Hume, T. Rosenband, D. Wineland, Optical clocks and relativity. Science 329, 1630–1633 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    T.L. Nicholson, A new record in atomic clock performance. Ph.D. Thesis, University of Colorado (2015)Google Scholar
  17. 17.
    N. Poli, C.W. Oates, P. Gill, G.M. Tino, Optical atomic clocks. Riv. Nuovo Cimento 36, 555–624 (2013)Google Scholar
  18. 18.
    L. von der Wense et al., Direct detection of the 229th nuclear clock transition. Nature 533, 47–51 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    C.J. Campbell et al., Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    P. Komar et al., A quantum network of clocks. Nat. Phys. 10, 582–587 (2014)CrossRefGoogle Scholar
  21. 21.
    O. Hosten, N.J. Engelsen, R. Krishnakumar, M.A. Kasevich, Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529(7587), 505–508 (2016)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    M. Bondarescu, R. Bondarescu, P. Jetzer, A. Lundgren, The potential of continuous, local atomic clock measurements for earthquake prediction and volcanology, in EPJ Web of Conferences, vol. 95 (EDP Sciences, Les Ulis, 2015), 04009Google Scholar
  23. 23.
    D.E. Bruschi, A. Datta, R. Ursin, T.C. Ralph, I. Fuentes, Quantum estimation of the schwarzschild spacetime parameters of the earth. Phys. Rev. D 90, 124001 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    A. Dragan, I. Fuentes, J. Louko, Quantum accelerometer: distinguishing inertial bob from his accelerated twin rob by a local measurement. Phys. Rev. D 83, 085020 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    R. Howl, L. Hackermuller, D.E. Bruschi, I. Fuentes, Gravity in the quantum lab. arXiv preprint arXiv:1607.06666 (2016)Google Scholar
  26. 26.
    A. Derevianko, M. Pospelov, Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014)CrossRefGoogle Scholar
  27. 27.
    M.D. Gabriel, M.P. Haugan, Testing the Einstein equivalence principle: atomic clocks and local lorentz invariance. Phys. Rev. D 41, 2943 (1990)ADSCrossRefGoogle Scholar
  28. 28.
    P.C. Davies, Quantum mechanics and the equivalence principle. Classical Quantum Gravity 21, 2761 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    S. Reynaud, C. Salomon,P. Wolf, Testing general relativity with atomic clocks. Space Sci. Rev. 148, 233–247 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    C. Wilson et al., Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376–379 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    P. Lähteenmäki, G.S. Paraoanu, J. Hassel, P.J. Hakonen, Dynamical Casimir effect in a Josephson metamaterial. Proc. Natl. Acad. Sci. 110, 4234–4238 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    J.L. Ball, I. Fuentes-Schuller, F.P. Schuller, Entanglement in an expanding spacetime. Phys. Lett. A 359, 550–554 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    I. Fuentes, R.B. Mann, E. Martín-Martínez, S. Moradi, Entanglement of dirac fields in an expanding spacetime. Phys. Rev. D 82, 045030 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    I. Fuentes-Schuller, R.B. Mann, Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    P.M. Alsing, I. Fuentes, Observer-dependent entanglement. Classical Quantum Gravity 29, 224001 (2012)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    N. Friis, D.E. Bruschi, J. Louko, I. Fuentes, Motion generates entanglement. Phys. Rev. D 85, 081701 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    D.E. Bruschi, I. Fuentes, J. Louko, Voyage to alpha centauri: entanglement degradation of cavity modes due to motion. Phys. Rev. D 85, 061701 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    G. Adesso, I. Fuentes-Schuller, M. Ericsson, Continuous-variable entanglement sharing in noninertial frames. Phys. Rev. A 76, 062112 (2007)ADSCrossRefMathSciNetGoogle Scholar
  39. 39.
    N. Friis et al., Relativistic quantum teleportation with superconducting circuits. Phys. Rev. Lett. 110, 113602 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    N. Friis, M. Huber, I. Fuentes, D.E. Bruschi, Quantum gates and multipartite entanglement resonances realized by nonuniform cavity motion. Phys. Rev. D 86, 105003 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    D.E. Bruschi, A. Dragan, A.R. Lee, I. Fuentes, J. Louko, Relativistic motion generates quantum gates and entanglement resonances. Phys. Rev. Lett. 111, 090504 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    M. Ahmadi, D.E. Bruschi, I. Fuentes, Quantum metrology for relativistic quantum fields. Phys. Rev. D 89, 065028 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    M. Ahmadi, D.E. Bruschi, C. Sabín, G. Adesso, I. Fuentes, Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies. Sci. Rep. 4, 4996 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    C. Sabín, D.E. Bruschi, M. Ahmadi, I. Fuentes, Phonon creation by gravitational waves. New J. Phys. 16, 085003 (2014). http://stacks.iop.org/1367-2630/16/i=8/a=085003 ADSCrossRefGoogle Scholar
  45. 45.
    J. Lindkvist et al., Twin paradox with macroscopic clocks in superconducting circuits. Phys. Rev. A 90, 052113 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    D.E. Bruschi, J. Louko, D. Faccio, I. Fuentes, Mode-mixing quantum gates and entanglement without particle creation in periodically accelerated cavities. New J. Phys. 15, 073052 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    T. Opatrny, Number-phase uncertainty relations. J. Phys. A Math. Gen. 28, 6961 (1995)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    N. Friis, A.R. Lee, J. Louko, Scalar, spinor, and photon fields under relativistic cavity motion. Phys. Rev. D 88, 064028 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    S. Fagnocchi, S. Finazzi, S. Liberati, M. Kormos, A. Trombettoni, Relativistic Bose–Einstein condensates: a new system for analogue models of gravity. New J. Phys. 12, 095012 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    N.D. Birrell,P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1984)zbMATHGoogle Scholar
  51. 51.
    V. Giovannetti, S. Lloyd, L. Maccone, Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011). http://www.nature.com/nphoton/journal/v5/n4/full/nphoton.2011.35.html ADSCrossRefGoogle Scholar
  52. 52.
    H.M. Wiseman, G.J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2009)CrossRefzbMATHGoogle Scholar
  53. 53.
    J. Aasi et al., Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photonics 7, 613–619 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    S.S. Szigeti, B. Tonekaboni, W.Y.S. Lau, S.N. Hood, S.A. Haine, Squeezed-light-enhanced atom interferometry below the standard quantum limit. Phys. Rev. A 90, 063630 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    B. Altschul et al., Quantum tests of the Einstein equivalence principle with the STE-QUEST space mission. Adv. Space Res. 55, 501–524 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    J. Lindkvist, C. Sabín, G. Johansson, I. Fuentes, Motion and gravity effects in the precision of quantum clocks. Sci. Rep. 5, 10070 (2015).ADSCrossRefGoogle Scholar
  57. 57.
    M. Born, The theory of the rigid electron in the kinematics of the relativity principle. Ann. Phys. (Leipzig) 30, 1 (1909)Google Scholar
  58. 58.
    A. Monras, Optimal phase measurements with pure gaussian states. Phys. Rev. A 73, 033821 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    E.A. Desloge, Nonequivalence of a uniformly accelerating reference frame and a frame at rest in a uniform gravitational field. Am. J. Phys. 57, 1121–1125 (1989)ADSCrossRefMathSciNetGoogle Scholar
  60. 60.
    F. Dahia, P.F. da Silva, Static observers in curved spaces and non-inertial frames in Minkowski spacetime. Gen. Relativ. Gravit. 43, 269–292 (2011)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    M. Lock, I. Fuentes, Dynamical Casimir effect in curved spacetime. New J. Phys. 19, 073005 (2017)ADSCrossRefMathSciNetGoogle Scholar
  62. 62.
    L.E. Parker, The creation of particles in an expanding universe. Ph.D. Thesis, Harvard University (1966)Google Scholar
  63. 63.
    L. Parker, Particle creation and particle number in an expanding universe. J. Phys. A Math. Theor. 45, 374023 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  64. 64.
    S. Fulling, P. Davies, Radiation from a moving mirror in two dimensional space-time: conformal anomaly, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 348, 393–414 (The Royal Society, London, 1976)Google Scholar
  65. 65.
    L. Ford, A. Vilenkin, Quantum radiation by moving mirrors. Phys. Rev. D 25, 2569 (1982)ADSCrossRefGoogle Scholar
  66. 66.
    C. Braggio et al., A novel experimental approach for the detection of the dynamical Casimir effect. Europhys. Lett. 70, 754 (2005)ADSCrossRefGoogle Scholar
  67. 67.
    J.R. Johansson, G. Johansson, C. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett. 103, 147003 (2009)ADSCrossRefGoogle Scholar
  68. 68.
    J. Barbour, The End of Time: The Next Revolution in Physics (Oxford University Press, Oxford, 2001)Google Scholar
  69. 69.
    A. Einstein, Zur elektrodynamik bewegter körper. Ann. Phys. 322, 891–921 (1905)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsImperial CollegeLondonUK
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria
  3. 3.School of Mathematical SciencesUniversity of NottinghamNottinghamUK

Personalised recommendations