Distance Geometry in Active Structures

  • Josep M. PortaEmail author
  • Nicolás Rojas
  • Federico Thomas
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 92)


Distance constraints are an emerging formulation that offers intuitive geometrical interpretation of otherwise complex problems. The formulation can be applied in problems such as position and singularity analysis and path planning of mechanisms and structures. This paper reviews the recent advances in distance geometry, providing a unified view of these apparently disparate problems. This survey reviews algebraic and numerical techniques, and is, to the best of our knowledge, the first attempt to summarize the different approaches relating to distance-based formulations.



This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under project DPI2014-57220-C2-2-P.


  1. 1.
    Miura K (1984) Variable geometry truss concept. Technical report 614, The Institute of Space and Astronautical ScienceGoogle Scholar
  2. 2.
    Hughes PC, Sincarsin WC, Carroll KA (1991) Trussarm–a variable-geometry-truss manipulator. J Intell Mat Syst Struct 2(2):148–160CrossRefGoogle Scholar
  3. 3.
    Chirikjian GS, Burdick JW (1994) A hyper-redundant manipulator. IEEE Robot Autom Mag 1(4):22–29CrossRefGoogle Scholar
  4. 4.
    Sultan C, Corless M, Skelton RE (2000) Tensegrity flight simulator. J Guid Control Dyn 26(6):1055–1064CrossRefGoogle Scholar
  5. 5.
    Dadone P, Lacarbonara W, Nayfeh AH, Vanlandingham HF (2003) Payload pendulation reduction using a variable-geometry-truss architecture with LQR and fuzzy controls. J Vib Control 9(7):805–837zbMATHGoogle Scholar
  6. 6.
    Stoughton RS, Tucker JC (1995) A variable geometry truss manipulator for positioning large payloads. In: American Nuclear Society meeting on robotics and remote systemsGoogle Scholar
  7. 7.
    Finistauri AD, Fengfeng X (2009) Type synthesis and kinematics of a modular variable geometry truss mechanism for aircraft wing morphing. In: International conference on reconfigurable mechanisms and robots, pp 478–485Google Scholar
  8. 8.
    Miura K, Furuya H, Suzuki K (1985) Variable geometry truss and its application to deployable truss and space crane arm. Acta Astronaut 12(7):599–607CrossRefGoogle Scholar
  9. 9.
    Kurita K, Inoue F, Furuya N, Shiokawa T, Natori M (2001) Development of adaptive roof structure by variable geometry truss. In: International symposium on automation and robotics in construction, pp. 1–6Google Scholar
  10. 10.
    Denavit J, Hartenberg R (1955) A kinematic notation for lower-pair mechanisms based on matrices. Trans ASME J Appl Mech 23:215–221MathSciNetzbMATHGoogle Scholar
  11. 11.
    Porta JM, Ros L, Thomas F (2005) On the trilaterable six-degree-of-freedom parallel and serial manipulators. In: IEEE international conference on robotics and automation, pp 960–967Google Scholar
  12. 12.
    Rojas N, Thomas F (2013) The univariate closure conditions of all fully-parallel planar robots derived from a single polynomial. IEEE Trans Robot 29(3):758–765CrossRefGoogle Scholar
  13. 13.
    Rojas N, Thomas F (2013) The closure condition of the double banana and its application to robot position analysis. In: IEEE international conference on robotics and automation, pp 4641–4646Google Scholar
  14. 14.
    Manocha D, Canny J (1994) Efficient inverse kinematics for general 6R manipulators. IEEE Trans Robot Autom 10:648–657CrossRefGoogle Scholar
  15. 15.
    Merlet JP (2000) Parallel robots. SpringerGoogle Scholar
  16. 16.
    Guest S (1994) Deployable structures: concepts and analysis. PhD thesis, Cambridge UniversityGoogle Scholar
  17. 17.
    Rosales C, Porta JM, Suárez R, Ros L (2008) Finding all valid hand configurations for a given precision grasp. In: IEEE International conference on robotics and automation, pp 1634–1640Google Scholar
  18. 18.
    Rodríguez A, Basañez L, Celaya E, (2008) A relational positioning methodology for robot task specification and execution. IEEE Trans Robot 24(3):600–611Google Scholar
  19. 19.
    Porta JM (2005) CuikSLAM: a kinematics-based approach to SLAM. In: IEEE international conference on robotics and automation, pp 2436–2442Google Scholar
  20. 20.
    García de Jalón J, Bayo E (1993) Kinematic and dynamic simulation of multibody systems. SpringerGoogle Scholar
  21. 21.
    Bettig B, Hoffmann CM (2011) Geometric constraint solving in parametric computer-aided design. ASME J Comput Info Sci Eng 11:021001CrossRefGoogle Scholar
  22. 22.
    Wedemeyer WJ, Scheraga H (1999) Exact analytical loop closure in proteins using polynomial equations. J Comput Chem 20(8):819–844CrossRefGoogle Scholar
  23. 23.
    Cox D, Little J, O’Shea D (1997) An introduction to computational algebraic geometry and commutative algebra, 2nd edn. SpringerGoogle Scholar
  24. 24.
    Raghavan M (1993) The Stewart platform of general geometry has 40 configurations. ASME J Mech Des 115:277–282CrossRefGoogle Scholar
  25. 25.
    Rojas N (2012) Distance-based formulations for the position analysis of kinematic chains. PhD thesis, Institut de Robòtica i Informàtica IndustrialGoogle Scholar
  26. 26.
    Wohlhart K (2009) Position analyses of open normal Assur groups A(3.6). In: ASME/IFToMM Int Conf Reconfig Mech Robot, pp 88–94Google Scholar
  27. 27.
    Rojas N, Thomas F (2013) Application of distance geometry to tracing coupler curves of pin-jointed linkages. ASME J Mech Robot 5(2):021001CrossRefGoogle Scholar
  28. 28.
    Porta JM, Thomas F (2017) Closed-form position analysis of variable geometry trusses. Mech Mach Theory 109: 14–21Google Scholar
  29. 29.
    Blumenthal LM (1953) Theory and applications of distance geometry. Oxford University PressGoogle Scholar
  30. 30.
    Porta JM, Ros L, Thomas F (2005) Inverse kinematics by distance matrix completion. In: International workshop on computational kinematicsGoogle Scholar
  31. 31.
    Lavor C, Liberti L, Maculan N (2006) The discretizable molecular distance geometry problem. Technical reportGoogle Scholar
  32. 32.
    Liberti L, Lavor C (2013) On a relationship between graph realizability and distance matrix completion. In: Migdalas A (ed.) Optimization theory, decision making, and operations research applications, vol 31. Springer, pp 39–48Google Scholar
  33. 33.
    Porta JM, Ros L, Thomas F, Torras C (2002) Solving multi-loop linkages by iterating 2D clippings. In: Thomas F, Lenarcic J (eds.) Advances in robot kinematics. Kluwer Academic Publishers, pp 255–264Google Scholar
  34. 34.
    Porta JM, Ros L, Thomas F, Torras C (2003) A branch-and-prune algorithm for solving systems of distance constraints. In: IEEE international conference on robotics and automation, pp 342–348Google Scholar
  35. 35.
    Porta JM, Ros L, Thomas F, Torras C (2005) A branch-and-prune solver for distance constraints. IEEE Trans Robot 21(2):176–187CrossRefGoogle Scholar
  36. 36.
    Crippen G, Havel TF (1998) Distance geometry and molecular conformation. Research Studies PressGoogle Scholar
  37. 37.
    Rikun AD (1997) A convex envelope formula for multilinear functions. J Glob Optim 10:425–437MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Ting Y, Yu-Shin YC, Jar HC (2004) Modeling and control for a Gough-Stewart platform CNC machine. Int J Robot Syst 21(11):609–623CrossRefzbMATHGoogle Scholar
  39. 39.
    Cappel KL, Marlton N (1967) Motion simulator. U.S. patent 32 95 224Google Scholar
  40. 40.
    Su Y, Duan B, Nan R, Peng B (2003) Mechatronics design of stiffness enhancement of the feed supporting system for the square-kilometer array. IEEE/ASME Tranactions on Mechatronics 8(4):425–430CrossRefGoogle Scholar
  41. 41.
    Rojas N, Borràs J, Thomas F (2012) The octahedral manipulator revisited. In: IEEE international conference on robotics and automation, pp 2293–2298Google Scholar
  42. 42.
    Porta JM, Ros L, Thomas F, Corcho F, Cantó J, Pérez JJ (2007) Complete maps of molecular-loop conformational spaces. J Comput Chem 28(13):2170–2189CrossRefGoogle Scholar
  43. 43.
    Thomas F (2004) Solving geometric constraints by iterative projections and back projections. In: International conference on robotics and automation, pp 1789–1795Google Scholar
  44. 44.
    Alefeld G, Herzberger J (1983) Introduction to interval computations. Academic Press, Orlando, FloridazbMATHGoogle Scholar
  45. 45.
    Porta JM, Thomas F Sensor localization from distance and orientation constraintsGoogle Scholar
  46. 46.
    Thomas F (2014) Computing cusps of 3R robots using distance geometry. In: International symposium on advances in robot kinematicsGoogle Scholar
  47. 47.
    Rull A, Porta JM, Thomas F (2014) Distance bound smoothing under orientation constraints. In: IEEE international conference on robotics and automation, pp 1431–1436Google Scholar
  48. 48.
    Thomas F (1995) An approach to the movers’ problem that combines oriented matroid theory and algebraic geometry. IEEE Int Conf Robot Autom 3:2285–2293Google Scholar
  49. 49.
    Havel T (1995) Distance geometry, pp 1701–1710. Wiley, New YorkGoogle Scholar
  50. 50.
    Bohigas O, Zlatanov D, Ros L, Manubens M, Porta JM (2015) A general method for the numerical computation of manipulator singularity sets. IEEE Trans Robot 30(2):340–351CrossRefGoogle Scholar
  51. 51.
    Borràs J (2011) Singularity-invariant leg rearrangements on Stewart-Gough platforms. PhD thesis, Institut de Robòtica i Informàtica IndustrialGoogle Scholar
  52. 52.
    Borràs J, Thomas F, Torras C (2010) Singularity-invariant leg rearrangements in doubly-planar Stewart-Gough platforms. In: Robotics science and systemsGoogle Scholar
  53. 53.
    Choset H, Lynch K, Hutchinson S, Kantor G, Burgard W, Kavraki L, Thrun S (2005) Principles of robot motion: theory, algorithms, and implementations. MIT PressGoogle Scholar
  54. 54.
    LaValle SM (2006) Planning algorithms. Cambridge University Press, New YorkCrossRefzbMATHGoogle Scholar
  55. 55.
    Bohigas O, Henderson ME, Ros L, Manubens M, Porta JM (2013) Planning singularity-free paths on closed-chain manipulators. IEEE Trans Robot 29(4):888–898CrossRefGoogle Scholar
  56. 56.
    Lavalle SM (2011) Motion planning. Part I: the essentials. IEEE Robot Autom Mag 18(1):79–89Google Scholar
  57. 57.
    Siméon T, Laumond JP, Cortés J, Sahbani A (2004) Manipulation planning with probabilistic roadmaps. Int J Robot Res 23(7–8):729–746CrossRefGoogle Scholar
  58. 58.
    Rosales C, Porta JM, Ros L (2013) Grasp optimization under specific contact constraints. IEEE Trans Robot 29(3):746–757CrossRefGoogle Scholar
  59. 59.
    Ballantyne G, Moll F (2003) The da Vinci telerobotic surgical system: virtual operative field and telepresence surgery. Surg Clin North Am 83(6):1293–1304CrossRefGoogle Scholar
  60. 60.
    Trinkle JC, Milgram RJ (2001) Motion planning for planar n-bar mechanisms with revolute joints. IEEE/RSJ Int Conf Intell Robot Syst 3:1602–1608Google Scholar
  61. 61.
    Han L, Rudolph L, Blumenthal J, Valodzin I (2008) Stratified deformation space and path planning for a planar closed chain with revolute joints. In: Akella S, Amato NM, Huang WH, Mishra B (eds.) Algorithmic foundation of robotics VII, Springer tracts in advanced robotics, vol 47. Springer, pp 235–250Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Josep M. Porta
    • 1
    Email author
  • Nicolás Rojas
    • 2
  • Federico Thomas
    • 1
  1. 1.Institut de Robòtica i Informàtica IndustrialBarcelonaSpain
  2. 2.Faculty of EngineeringDyson School of Design Engineering, Imperial CollegeLondonEngland

Personalised recommendations