Advertisement

The Maximum Edge Weight Clique Problem: Formulations and Solution Approaches

  • Seyedmohammadhossein Hosseinian
  • Dalila B. M. M. Fontes
  • Sergiy Butenko
  • Marco Buongiorno Nardelli
  • Marco Fornari
  • Stefano Curtarolo
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 130)

Abstract

Given an edge-weighted graph, the maximum edge weight clique (MEWC) problem is to find a clique that maximizes the sum of edge weights within the corresponding complete subgraph. This problem generalizes the classical maximum clique problem and finds many real-world applications in molecular biology, broadband network design, pattern recognition and robotics, information retrieval, marketing, and bioinformatics among other areas. The main goal of this chapter is to provide an up-to-date review of mathematical optimization formulations and solution approaches for the MEWC problem. Information on standard benchmark instances and state-of-the-art computational results is also included.

Notes

Acknowledgments

This work was carried out, while the second author was a visiting scholar at Texas A&M University, College Station, TX, USA, and is partially supported by scholarship SFRH/BSAB/113662/2015. Partial support by DOD-ONR (N00014-13-1-0635) NSF (CMMI-1538493) grants is also gratefully acknowledged.

References

  1. 1.
    Agapito, L.A., Ferretti, A., Calzolari, A., Curtarolo, S., Buongiorno Nardelli, M.: Effective and accurate representation of extended Bloch states on finite Hilbert spaces. Phys. Rev. B 88, 165127 (2013)Google Scholar
  2. 2.
    Agapito, L.A., Fornari, M., Ceresoli, D., Ferretti, A., Curtarolo, S., Buongiorno Nardelli, M.: Accurate tight-binding Hamiltonians for two-dimensional and layered materials. Phys. Rev. B 93, 125137 (2016)Google Scholar
  3. 3.
    Agapito, L.A., Ismail-Beigi, S., Curtarolo, S., Fornari, M., Buongiorno Nardelli, M.: Accurate tight-binding Hamiltonian matrices from ab initio calculations: minimal basis sets. Phys. Rev. B 93, 035104 (2016)Google Scholar
  4. 4.
    Alidaee, B., Glover, F., Kochenberger, G.A., Rego, C.: A new modeling and solution approach for the number partitioning problem. Adv. Decis. Sci. 2005(2), 113–121 (2005)Google Scholar
  5. 5.
    Alidaee, B., Glover, F., Kochenberger, G., Wang, H.: Solving the maximum edge weight clique problem via unconstrained quadratic programming. Eur. J. Oper. Res. 181(2), 592–597 (2007)Google Scholar
  6. 6.
    Alidaee, B., Kochenberger, G., Lewis, K., Lewis, M., Wang, H.: A new approach for modeling and solving set packing problems. Eur. J. Oper. Res. 186(2), 504–512 (2008)Google Scholar
  7. 7.
    Balas, E., Christofides, N.: A restricted Lagrangean approach to the traveling salesman problem. Math. Program. 21(1), 19–46 (1981)Google Scholar
  8. 8.
    Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM J. Comput. 15(4), 1054–1068 (1986)Google Scholar
  9. 9.
    Ballard, D.H., Brown, C.M.: Computer Vision, 1982. Prenice-Hall, Englewood Cliffs, NJ (1982)Google Scholar
  10. 10.
    Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem 1. Algorithmica 29(4), 610–637 (2001)Google Scholar
  11. 11.
    Butenko, S., Wilhelm, W.E.: Clique-detection models in computational biochemistry and genomics. Eur. J. Oper. Res. 173(1), 1–17 (2006)Google Scholar
  12. 12.
    Cavique, L.: A scalable algorithm for the market basket analysis. J. Retail. Consum. Serv. 14(6), 400–407 (2007)Google Scholar
  13. 13.
    Corman, S.R., Kuhn, T., McPhee, R.D., Dooley, K.J.: Studying complex discursive systems. Hum. Commun. Res. 28(2), 157–206 (2002)Google Scholar
  14. 14.
    Dijkhuizen, G., Faigle, U.: A cutting-plane approach to the edge-weighted maximal clique problem. Eur. J. Oper. Res. 69(1), 121–130 (1993)Google Scholar
  15. 15.
    Faigle, U., Garbe, R., Heerink, K., Spieker, B.: Lp-relaxations for the edge-weighted subclique problem. In: Operations Research ’93, pp. 157–160. Springer, Berlin (1994)Google Scholar
  16. 16.
    Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6, 109–133 (1995)Google Scholar
  17. 17.
    Fontes, D.B.M.M., Gonçalves, J.F.: Heuristic solutions for general concave minimum cost network flow problems. Networks 50(1), 67–76 (2007)Google Scholar
  18. 18.
    Fontes, D.B.M.M., Gonçalves, J.F.: A multi-population hybrid biased random key genetic algorithm for hop-constrained trees in nonlinear cost flow networks. Optim. Lett. 7(6), 1303–1324 (2013)Google Scholar
  19. 19.
    Fontes, D.B.M.M., Gonçalves, J.F., Fontes, F.F.: A GA approach to the maximum edge weight clique problem. In: CECNet 2016 – 6th International Conference on Electronics, Communications and Networks, Macau University of Science and Technology (2016)Google Scholar
  20. 20.
    Fontes, D.B.M.M., Gonçalves, J.F., Fontes, F.F.: An evolutionary approach to the maximum edge weight clique problem (2017, submitted)Google Scholar
  21. 21.
    Förster, J., Famili, I., Fu, P., Palsson, B.Ø., Nielsen, J.: Genome-scale reconstruction of the saccharomyces cerevisiae metabolic network. Genome Res. 13(2), 244–253 (2003)Google Scholar
  22. 22.
    Gendron, B., Hertz, A., St-Louis, P.: A sequential elimination algorithm for computing bounds on the clique number of a graph. Discret. Optim. 5(3), 615–628 (2008)Google Scholar
  23. 23.
    Glover, F., Kochenberger, G., Alidaee, B., Amini, M.: Tabu search with critical event memory: an enhanced application for binary quadratic programs. In: Meta-Heuristics, pp. 93–109. Springer, Berlin (1999)Google Scholar
  24. 24.
    Gonçalves, J.F., Resende, M.G.: Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17(5), 487–525 (2011)Google Scholar
  25. 25.
    Gouveia, L., Martins, P.: Solving the maximum edge-weight clique problem in sparse graphs with compact formulations. EURO J. Comput. Optim. 3(1), 1–30 (2015)Google Scholar
  26. 26.
    Gouveia, L., Moura, P.: Enhancing discretized formulations: the knapsack reformulation and the star reformulation. Top 20(1), 52–74 (2012)Google Scholar
  27. 27.
    Hosseinian, S., Fontes, D.B.M.M., Butenko, S.: A quadratic approach to the maximum edge weight clique problem. In: XIII Global Optimization Workshop (2016)Google Scholar
  28. 28.
    Hosseinian, S., Fontes, D.B.M.M., Butenko, S.: A nonconvex quadratic optimization approach to the maximum edge weight clique problem (2017, submitted)Google Scholar
  29. 29.
    Hunting, M., Faigle, U., Kern, W.: A Lagrangian relaxation approach to the edge-weighted clique problem. Eur. J. Oper. Res. 131(1), 119–131 (2001)Google Scholar
  30. 30.
    Johnson, E.L., Mehrotra, A., Nemhauser, G.L.: Min-cut clustering. Math. Program. 62(1–3), 133–151 (1993)Google Scholar
  31. 31.
    Karp, R.M.: Reducibility Among Combinatorial Problems. Springer, Berlin (1972)Google Scholar
  32. 32.
    Kochenberger, G., Glover, F., Alidaee, B., Lewis, K.: Using the unconstrained quadratic program to model and solve max 2-sat problems. Int. J. Oper. Res. 1(1–2), 89–100 (2005)Google Scholar
  33. 33.
    Kochenberger, G.A., Glover, F., Alidaee, B., Rego, C.: An unconstrained quadratic binary programming approach to the vertex coloring problem. Ann. Oper. Res. 139(1), 229–241 (2005)Google Scholar
  34. 34.
    Lei, T.L., Church, R.L.: On the unified dispersion problem: efficient formulations and exact algorithms. Eur. J. Oper. Res. 241(3), 622–630 (2015)Google Scholar
  35. 35.
    Li, X., Wu, M., Kwoh, C.K., Ng, S.K.: Computational approaches for detecting protein complexes from protein interaction networks: a survey. BMC Genomics 11(1), 1 (2010)Google Scholar
  36. 36.
    Lucena, A.: Steiner problem in graphs: Lagrangean relaxation and cutting planes. COAL Bull. 21(2), 2–8 (1992)Google Scholar
  37. 37.
    Macambira, E.M.: An application of tabu search heuristic for the maximum edge-weighted subgraph problem. Ann. Oper. Res. 117, 175–190 (2002)Google Scholar
  38. 38.
    Macambira, E.M., de Souza, C.C.: The edge-weighted clique problem: valid inequalities, facets and polyhedral computations. Eur. J. Oper. Res. 123, 346–371 (2000)Google Scholar
  39. 39.
    Martí, R., Gallego, M., Duarte, A., Pardo, E.G.: Heuristics and metaheuristics for the maximum diversity problem. J. Heuristics 19(4), 591–615 (2013)Google Scholar
  40. 40.
    Martins, P.: Extended and discretized formulations for the maximum clique problem. Comput. Oper. Res. 37(7), 1348–1358 (2010)Google Scholar
  41. 41.
    Martins, P.: Cliques with maximum/minimum edge neighborhood and neighborhood density. Comput. Oper. Res. 39(3), 594–608 (2012)Google Scholar
  42. 42.
    Mascia, F., Cilia, E., Brunato, M., Passerini, A.: Predicting structural and functional sites in proteins by searching for maximum-weight cliques. In: AAAI. Citeseer (2010)Google Scholar
  43. 43.
    Mehrotra, A.: Cardinality constrained boolean quadratic polytope. Discret. Appl. Math. 79, 137–154 (1997)Google Scholar
  44. 44.
    Mehrotra, A., Trick, M.A.: Cliques and clustering: a combinatorial approach. Oper. Res. Lett. 22(1), 1–12 (1998)Google Scholar
  45. 45.
    Padberg, M.: The boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45(1–3), 139–172 (1989)Google Scholar
  46. 46.
    Park, K., Lee, K., Park, S.: An extended formulation approach to the edge-weighted maximal clique problem. Eur. J. Oper. Res. 95(3), 671–682 (1996)Google Scholar
  47. 47.
    Pisinger, D.: The quadratic knapsack problem – a survey. Discret Appl. Math. 155, 623–648 (2007)Google Scholar
  48. 48.
    Prokopyev, O.A., Kong, N., Martinez-Torres, D.L.: The equitable dispersion problem. Eur. J. Oper. Res. 197(1), 59–67 (2009)Google Scholar
  49. 49.
    Pullan, W.: Phased local search for the maximum clique problem. J. Comb. Optim. 12(3), 303–323 (2006)Google Scholar
  50. 50.
    Pullan, W.: Approximating the maximum vertex/edge weighted clique using local search. J. Heuristics 14(2), 117–134 (2008)Google Scholar
  51. 51.
    Sørensen, M.M.: New facets and a branch-and-cut algorithm for the weighted clique problem. Working paper 01–2, Department of Management Science and Logistics, The Aarhus School of Business (2001)Google Scholar
  52. 52.
    Sørensen, M.M.: New facets and a branch-and-cut algorithm for the weighted clique problem. Eur. J. Oper. Res. 154, 57–70 (2004)Google Scholar
  53. 53.
    Späth, H.: Heuristically determining cliques of given cardinality and with minimal cost within weighted complete graphs. Z. Oper. Res. 29(3), 125–131 (1985)Google Scholar
  54. 54.
    Tomita, E., Akutsu, T., Matsunaga, T.: Efficient algorithms for finding maximum and maximal cliques: effective tools for bioinformatics. INTECH Open Access Publisher (2011)Google Scholar
  55. 55.
    Wu, Q., Hao, J.K.: A review on algorithms for maximum clique problems. Eur. J. Oper. Res. 242(3), 693–709 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Seyedmohammadhossein Hosseinian
    • 1
  • Dalila B. M. M. Fontes
    • 2
  • Sergiy Butenko
    • 1
  • Marco Buongiorno Nardelli
    • 3
  • Marco Fornari
    • 4
  • Stefano Curtarolo
    • 5
  1. 1.Texas A&M UniversityCollege StationUSA
  2. 2.Faculdade de Economia da Universidade do Porto, and LIAAD/INESC TEC, Rua Dr. Roberto FriasPortoPortugal
  3. 3.Physics, Chemistry and iARTA, Initiative for Advanced Research in Technology and the ArtsUniversity of North TexasDentonUSA
  4. 4.Department of PhysicsCentral Michigan UniversityMount PleasantUSA
  5. 5.Materials Science, Electrical Engineering, Physics and ChemistryDuke UniversityDurhamUSA

Personalised recommendations