Aeroecology pp 379-399 | Cite as

The Lofty Lives of Aerial Consumers: Linking Population Ecology and Aeroecology

  • Winifred F. Frick
  • Jennifer J. Krauel
  • Kyle R. Broadfoot
  • Jeffrey F. Kelly
  • Phillip B. Chilson
Chapter

Abstract

Integrating population ecology and aeroecology is important for conservation for species that depend on aerial habitats. Assessing population response to anthropogenic stressors is key to predicting species at risk of extirpation or extinction, yet can be particularly challenging for species that predominately use the aerosphere. In this chapter, we focus on two aerial vertebrate consumers (purple martins and Brazilian free-tailed bats) as well-studied model systems to explore interactions between environmental forcing, behaviors, and population ecology. We also explore new recent progress on using radar-based methods to quantify aerial populations and discuss the utility of these novel approaches for a more promising integration of aeroecology and population ecology.

References

  1. Allen RW, Nice MM (1952) A study of the breeding biology of the Purple Martin (Progne subis). Am Midl Nat 47:606–665.  https://doi.org/10.2307/2422034 CrossRefGoogle Scholar
  2. Amorim F, Cryan PM, Rebelo H et al (2014) Behavior of bats at wind turbines. Proc Natl Acad Sci USA 111:15126–15131.  https://doi.org/10.1073/pnas.1406672111 CrossRefGoogle Scholar
  3. Arnett EB, Baerwald EF, Mathews F et al (2016) Impacts of wind energy development on bats: a global perspective. In: Voight CC, Kingston T (eds) Bats in the anthropocene: conservation of bats in a changing world. Springer, Cham, pp 295–323CrossRefGoogle Scholar
  4. Betke M, Hirsh DE, Makris NC et al (2008) Thermal imaging reveals significantly smaller Brazilian freetailed bat colonies than previously estimated. J Mammal 89:18–24.  https://doi.org/10.1644/07-MAMM-A-011.1 CrossRefGoogle Scholar
  5. Bonner WD (1968) Climatology of the low level jet. Mon Weather Rev 96:833–850CrossRefGoogle Scholar
  6. Bonner WD, Paegle J (1970) Diurnal variations in boundary layer winds over the south-central united states in summer. Mon Weather Rev 98:735–744CrossRefGoogle Scholar
  7. Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83.  https://doi.org/10.1038/nature04539 CrossRefPubMedGoogle Scholar
  8. Bowlin MS, Bisson IA, Shamoun-Baranes J et al (2010) Grand challenges in migration biology. Integr Comp Biol 50:261CrossRefPubMedGoogle Scholar
  9. Bridge ES, Thorup K, Bowlin MS et al (2011) Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61:689–698CrossRefGoogle Scholar
  10. Bruderer B, Joss J (1969) Methoden und Probleme der Bestimmung von Radarquerschnitten frei fliegender VögelGoogle Scholar
  11. Bruderer B, Steidinger P (1972) Methods of quantitative and qualitative analysis of bird migration with a tracking radarGoogle Scholar
  12. Buler JJ, Diehl RH (2009) Quantifying bird density during migratory stopover using weather surveillance radar. IEEE Trans Geosci Remote Sens 47:2741–2751.  https://doi.org/10.1109/TGRS.2009.2014463 CrossRefGoogle Scholar
  13. Buler JJ, Lakshmanan V, La Puma D (2012a) Improving weather radar data processing for biological research applications: Final reportGoogle Scholar
  14. Buler JJ, Randall LA, Fleskes JP et al (2012b) Mapping wintering waterfowl distributions using weather surveillance radar. PLoS One 7:e41571.  https://doi.org/10.1371/journal.pone.0041571
  15. Burt PJA, Pedgley DE (1997) Nocturnal insect migration: effects of local winds. In: Begon M, Fitter AH (eds) Advances in ecological research. Advances in ecological research. Academic, London, pp 61–92Google Scholar
  16. Chapman JW, Drake VA, Reynolds DR (2011a) Recent insights from radar studies of insect flight. Annu Rev Entomol 56:337–356CrossRefPubMedGoogle Scholar
  17. Chapman JW, Klaassen RHG, Drake VA et al (2011b) Animal orientation strategies for movement in flows. Curr Biol 21:R861–R870.  https://doi.org/10.1016/j.cub.2011.08.014 CrossRefPubMedGoogle Scholar
  18. Chilson PB, Bolognini K, Cheong BL (2009) Using a dual-polarimetric weather radar simulator to investigate microwave backscatter from birdsGoogle Scholar
  19. Chilson PB, Frick WF, Kelly JF et al (2012a) Partly cloudy with a chance of migration: weather, radars, and aeroecology. Bull Am Meteorol Soc 93:669–686.  https://doi.org/10.1175/BAMS-D-11-00099.1 CrossRefGoogle Scholar
  20. Chilson PB, Frick WF, Stepanian PM et al (2012b) Estimating animal densities in the aerosphere using weather radar: to Z or not to Z? Ecosphere 3:art72.  https://doi.org/10.1890/ES12-00027.1 CrossRefGoogle Scholar
  21. Cleveland CJ, Betke M, Federico P et al (2006) Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front Ecol Environ 4:238–243CrossRefGoogle Scholar
  22. Davis RB, Herreid CF, Short HL (1962) Mexican free-tailed bats in Texas. Ecol Monogr 32:311.  https://doi.org/10.2307/1942378 CrossRefGoogle Scholar
  23. Dingle H (2014) Migration: the biology of life on the move, 2nd edn. Oxford University Press, OxfordCrossRefGoogle Scholar
  24. Dokter AM, Liechti F, Stark H et al (2011) Bird migration flight altitudes studied by a network of operational weather radars. J R Soc Interface 8:30–43.  https://doi.org/10.1098/rsif.2010.0116 CrossRefPubMedGoogle Scholar
  25. Doviak RJ, Zrnić DS (1993) Dopper radar and weather observations, 2nd edn. Academic, New YorkGoogle Scholar
  26. Drake VA, Gatehouse AG (eds) (1995) Insect migration: tracking resources through space and time. Cambridge University Press, CambridgeGoogle Scholar
  27. Duvergé PL, Jones G, Rydell J, Ransome RD (2000) Functional significance of emergence timing in bats. Ecography 23:32–40CrossRefGoogle Scholar
  28. Eastwood E (1967) Radar ornithology. Methuen, LondonGoogle Scholar
  29. Edwards J, Houghton EW (1959) Radar echoing area polar diagrams of birds. Nature 184:1059Google Scholar
  30. Finlay JC (1976) Some effects of weather on Purple Martin activity. Auk 93:231–244.  https://doi.org/10.2307/4085041 Google Scholar
  31. Frick WF, Reynolds DS, Kunz TH (2010) Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J Anim Ecol 79:128–136.  https://doi.org/10.1111/j.1365-2656.2009.01615.x CrossRefPubMedGoogle Scholar
  32. Frick WF, Stepanian PM, Kelly JF et al (2012) Climate and weather impact timing of emergence of bats. PLoS One 7:e42737.  https://doi.org/10.1371/journal.pone.0042737.t003 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Furness RW, Greenwood JJD (eds) (1993) Birds as monitors of environmental change. Chapman & Hall, BeckenhamGoogle Scholar
  34. Hodgson JA, Thomas CD, Oliver TH et al (2011) Predicting insect phenology across space and time. Glob Chang Biol 17:1289–1300CrossRefGoogle Scholar
  35. Horn JW, Kunz TH (2008) Analyzing NEXRAD doppler radar images to assess nightly dispersal patterns and population trends in Brazilian free-tailed bats (Tadarida brasiliensis). Integr Comp Biol 48:24–39.  https://doi.org/10.1093/icb/icn051 CrossRefPubMedGoogle Scholar
  36. Ibáñez I, Primack RB, Miller-Rushing AJ et al (2010) Forecasting phenology under global warming. Philos Trans R Soc Lond Ser B Biol Sci 365:3247–3260CrossRefGoogle Scholar
  37. Jones G, Rydell J (1994) Foraging strategy and predation risk as factors influencing emergence time in echolocating bats. Philos Trans R Soc Lond Ser B Biol Sci 346:445–455CrossRefGoogle Scholar
  38. Jones G, Jacobs DS, Kunz TH, Willig MR (2009) Carpe noctem: the importance of bats as bioindicators. Endang Spec Res 8:93–115CrossRefGoogle Scholar
  39. Jørgensen PS, Böhning-Gaese K, Thorup K, et al (2015) Continent-scale global change attribution in European birds – combining annual and decadal time scales. Glob Chang Biol.  https://doi.org/10.1111/gcb.13097
  40. Kelly JF, Shipley JR, Chilson PB et al (2012) Quantifying animal phenology in the aerosphere at a continental scale using NEXRAD weather radars. Ecosphere 3:art16.  https://doi.org/10.1890/ES11-00257.1 CrossRefGoogle Scholar
  41. Kelly JF, Bridge ES, Frick WF, Chilson PB (2013) Ecological energetics of an abundant aerial insectivore, the Purple Martin. PLoS One 8:e76616.  https://doi.org/10.1371/journal.pone.0076616 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Krauel JJ, Westbrook JK, GF MC (2015) Weather-driven dynamics in a dual-migrant system: moths and bats. J Anim Ecol 84:604–614.  https://doi.org/10.1111/1365-2656.12327 CrossRefPubMedGoogle Scholar
  43. Kunz TH, Arnett EB, Erickson WP (2007) Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Front Ecol Environ 5:315–324CrossRefGoogle Scholar
  44. Kunz TH, Gauthreaux SA, Hristov NI et al (2008) Aeroecology: probing and modeling the aerosphere. Integr Comp Biol 48:1–11.  https://doi.org/10.1093/icb/icn037 CrossRefPubMedGoogle Scholar
  45. Langston C, Zhang J, Howard K (2007) Four-dimensional dynamic radar mosaic. J Atmos Ocean Technol 24:776–790CrossRefGoogle Scholar
  46. Lee YF, McCracken GF (2002) Foraging activity and food resource use of Brazilian free-tailed bats, Tadarida brasiliensis (Molossidae) on JSTOR. Ecoscience 9:306–313.  https://doi.org/10.2307/42901406 CrossRefGoogle Scholar
  47. Lee YF, McCracken GF (2005) Dietary variation of Brazilian free-tailed bats links to migratory populations of pest insects. J Mammal 86:67–76CrossRefGoogle Scholar
  48. Lovett GM, Burns DA, Driscoll CT et al (2007) Who needs environmental monitoring? Front Ecol Environ 5:253–260.  https://doi.org/10.1890/1540-9295(2007)5[253:WNEM]2.0.CO;2 CrossRefGoogle Scholar
  49. Maine JJ, Boyles JG (2015) Bats initiate vital agroecological interactions in corn. Proc Natl Acad Sci USA 112:12438–12443.  https://doi.org/10.1073/pnas.1505413112 CrossRefPubMedPubMedCentralGoogle Scholar
  50. McCracken GF, Gillam EH, Westbrook JK et al (2008) Brazilian free-tailed bats (Tadarida brasiliensis: Molossidae, Chiroptera) at high altitude: links to migratory insect populations. Integr Comp Biol 48:107–118.  https://doi.org/10.1093/icb/icn033 CrossRefPubMedGoogle Scholar
  51. Nebel S, Mills A, McCracken JD, Taylor PD (2010) Declines of aerial insectivores in North America follow a geographic gradient. Avian Conserv Ecol 5:1CrossRefGoogle Scholar
  52. O’Shea TJ (1976) Fat content in migratory central arizona brazilian free-tailed bats, Tadarida brasiliensis (Molossidae). Southwest Nat 21:321–326.  https://doi.org/10.2307/3669717 CrossRefGoogle Scholar
  53. Pagels JF (1972) The effects of short and prolonged cold exposure on arousal in the free-tailed bat, Tadarida brasiliensis cynocephala (Le Conte). Comp Biochem Physiol A Physiol 42:559–567.  https://doi.org/10.1016/0300-9629(72)90134-X CrossRefGoogle Scholar
  54. Palmer RD, Xue M, Cheong BL, Xue M (2008) A time series weather radar simulator based on high-resolution atmospheric models. 25:230–243.  https://doi.org/10.1175/2007JTECHA923.1
  55. Reichard JD, Gonzalez LE, Casey CM et al (2009) Evening emergence behavior and seasonal dynamics in large colonies of Brazilian free-tailed bats. J Mammal 90:1478–1486.  https://doi.org/10.1644/08-MAMM-A-266R1.1 CrossRefGoogle Scholar
  56. Reynolds AM, Reynolds DR, Smith AD, Chapman JW (2010) A single wind-mediated mechanism explains high-altitude “non-goal oriented” headings and layering of nocturnally migrating insects. Proc Biol Sci 277:765–772.  https://doi.org/10.1098/rspb.2009.1221 CrossRefPubMedGoogle Scholar
  57. Rich TD, Beardmore C, Berlanga H et al (2004) Partners in Flight North American Landbird Conservation Plan. Cornell Lab of Ornithology Ithaca Partners in Flight, New YorkGoogle Scholar
  58. Root TL, Hughes L (2005) Present and future phenological changes in wild plants and animals. In: Lovejoy TE, Hannah L (eds) Climate change and biodiversity. See Lovejoy & Hannah, New Haven, pp 61–69Google Scholar
  59. Russell KR, Gauthreaux SA Jr (1999) Spatial and temporal dynamics of a Purple Martin pre-migratory roost on JSTOR. Wilson Bull.  https://doi.org/10.2307/4164099
  60. Russell KR, Mizrahi DS, Gauthreaux SA Jr (1998) Large-scale mapping of Purple Martin pre-migratory roosts using WSR-88D weather surveillance radar (Mapas a Larga Escala de los Dormideros Pre-Migratorios de Progne subis Utilizando Radares WSR-88D Para el Monitoreo del Clima) on JSTOR. J Field Ornithol.  https://doi.org/10.2307/4514321
  61. Rydell J, Entwistle A, Racey PA (1996) Timing of foraging flights of three species of bats in relation to insect activity and predation risk. Oikos 76:243–252CrossRefGoogle Scholar
  62. Smith AC, Hudson M-AR, Downes CM, Francis CM (2015) Change points in the population trends of aerial-insectivorous birds in North America: synchronized in time across species and regions. PLoS One 10:e0130768.  https://doi.org/10.1371/journal.pone.0130768 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Stepanian PM, Chilson PB, Kelly JF (2014) An introduction to radar image processing in ecology. Methods Ecol Evol 5:730–738.  https://doi.org/10.1111/2041-210X.12214 CrossRefGoogle Scholar
  64. Tarof SA, Brown CR (2013) Purple Martin (Progne subis). In: Poole A (ed) The Birds of North America Online. Cornell University, IthacaGoogle Scholar
  65. Vasiloff SV, Seo D, Howard KW et al (2007) Improving QPE and very short term QPF. Bull Am Meteorol Soc 88:1899–1911CrossRefGoogle Scholar
  66. Westbrook JK (2008) Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integr Comp Biol 48:99CrossRefPubMedGoogle Scholar
  67. Wiederholt R, López-Hoffman L, Cline J et al (2013) Moving across the border: modeling migratory bat populations. Ecosphere 4:article 114.  https://doi.org/10.1890/ES13-00023.1 CrossRefGoogle Scholar
  68. Wiederholt R, López-Hoffman L, Svancara C et al (2015) Optimizing conservation strategies for Mexican free-tailed bats: a population viability and ecosystem services approach. Biodivers Conserv 24:63–82.  https://doi.org/10.1007/s10531-014-0790-7 CrossRefGoogle Scholar
  69. Wilkins KT (1989) Tadarida brasiliensis. Mamm Species 331:1–10CrossRefGoogle Scholar
  70. Williams SE, Shoo LP, Isaac JL et al (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol 6:e325.  https://doi.org/10.1371/journal.pbio.0060325 CrossRefPubMedCentralGoogle Scholar
  71. Wood CR, Clark SJ, Barlow JF, Chapman JW (2010) Layers of nocturnal insect migrants at high-altitude: the influence of atmospheric conditions on their formation. Agric For Entomol 12:113–121.  https://doi.org/10.1111/j.1461-9563.2009.00459.x CrossRefGoogle Scholar
  72. Zhang J, Howard K, Langston C et al (2004) Three-and four-dimensional high-resolution national radar mosaic. ERAD Publ Ser 2:105–108Google Scholar
  73. Zhang J, Howard K, Gourley JJ (2005) Constructing three-dimensional multiple-radar reflectivity mosaics: examples of convective storms and stratiform rain echoes. J Atmos Ocean Technol 22:30–42CrossRefGoogle Scholar
  74. Zhang J, Howard K, Langston C et al (2011) National mosaic and multi-sensor QPE (NMQ) system: description, results, and future plans. Bull Am Meteorol Soc 92:1321–1338CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Winifred F. Frick
    • 1
    • 2
  • Jennifer J. Krauel
    • 3
  • Kyle R. Broadfoot
    • 4
  • Jeffrey F. Kelly
    • 4
  • Phillip B. Chilson
    • 5
  1. 1.Bat Conservation InternationalAustinUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzUSA
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleUSA
  4. 4.Oklahoma Biological Survey and Department of BiologyUniversity of OklahomaNormanUSA
  5. 5.School of Meteorology, Advanced Radar Research Center, and Center for Autonomous Sensing and SamplingUniversity of OklahomaNormanUSA

Personalised recommendations