Aeroecology pp 277-309 | Cite as

Radar Aeroecology

  • Phillip B. ChilsonEmail author
  • Phillip M. Stepanian
  • Jeffrey F. Kelly


Aeroecology takes an integrative approach across several scientific disciplines to help further our understanding of biological patterns and processes. The use of radar systems to observe and monitor the airborne animals individually, as small groups, or as large-scale collective ensembles provides one example of this modality. Radar systems scanning the atmosphere are primarily used to monitor weather conditions and track the location and movements of aircraft. However, radar echoes regularly contain signals from other sources, such as airborne birds, bats, and arthropods. We briefly discuss how radar observations can be and have been used to study a variety of airborne organisms and examine some of the many potential benefits likely to arise from radar aeroecology for meteorological and biological research over a wide range of spatial and temporal scales. We also provide a brief background covering the fundamentals of radar operations and signal processing followed by a summary of the various radar systems commonly used for aeroecology. Throughout the chapter, we provide examples of biological scatter as detected by radar and describe how these observations can be used to provide meaningful biological information. Radar systems are becoming increasingly sophisticated with the advent of innovative signal processing and polarimetric capabilities. These capabilities are being harnessed to both promote meteorological and aeroecological research and explore the interface between these two broad disciplines.



Research presented in this chapter was funded in part by the National Science Foundation (Award # 1340921 from Macrosystems Biology) and the US Department of Agriculture National Institute of Food and Agriculture (NIFA-AFRI-003536). PBC is grateful to the support and accommodations from the Swiss Ornithological Institute during his sabbatical leave, which facilitated work on the chapter. Moreover, PBC acknowledges travel support from the European Network for the Radar surveillance of Animal Movement (ENRAM) program.


  1. Able KP (1970) A radar study of the altitude of nocturnal passerine migration. Bird Band 41(4):282–290.
  2. Alerstam T (1972) Nocturnal bird migration in Skane, Sweden, as recorded by radar in autumn 1971. Ornis Scand 3(2):141–151. CrossRefGoogle Scholar
  3. Alerstam T (1990) Bird migration. Cambridge University Press, CambridgeGoogle Scholar
  4. Alerstam T, Bauer CA (1973) a radar study of the spring migration of the crane (Grus grus) over the southern Baltic area. Vogelwarte 27:1–16Google Scholar
  5. Alerstam T, Gudmundsson GA (1999) Migration patters of tundra birds: tracking radar observations along the northeast passage. Arctic 52(4):346–371. CrossRefGoogle Scholar
  6. Alerstam T, Gudmundsson GA, Green M, Hedenström A (2001) Migration along orthoromic sun compass routes by arctic birds. Science 291(5502):300–303. PubMedCrossRefGoogle Scholar
  7. Alerstam T, Chapman JW, Bäckman J, Smith AD, Karlsson H, Nilsson C, Reynolds DR, Klaassen RHG, Hill JK (2011) Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds. Proc R Soc B.
  8. Al-Sakka H, Boumahmoud AA, Fradon B, Frasier SJ, Tabary P (2013) A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars. J Appl Meteorol Climatol 52(10):2328–2344. CrossRefGoogle Scholar
  9. Atlas D (1959) Radar studies of meteorological “angel” echoes. J Atmos Sol Terr Phys 15:262–287CrossRefGoogle Scholar
  10. Bachmann S, Zrnić DS (2007) Spectral density of polarimetric variables separating biological scatterers in the VAD display. J Atmos Oceanic Tech 24:1186–1198CrossRefGoogle Scholar
  11. Battan LJ (1973) Radar observations of the atmosphere. University of Chicago Presss, Chicago, ILGoogle Scholar
  12. Bean BR, Dutton EJ (1966) Radar meteorology. U.S. Govt Printing Office, Washington, DC, p 431Google Scholar
  13. Bell JR, Aralimarad P, Lim KS, Chapman JW (2013) Predicting insect migration density and speed in the daytime convective boundary layer. PLoS One 8(1):1–9. CrossRefGoogle Scholar
  14. Blacksmith P Jr, Mack RB (1965) On measuring the radar cross sections of ducks and chickens. Proc IEEE 53(8):1125CrossRefGoogle Scholar
  15. Bohren CF, Clothiaux EE (2006) Fundamentals of atmospheric radiation. Wiley, WeinheimCrossRefGoogle Scholar
  16. Bonter DN, Gauthreaux SA Jr, Donovan TM (2009) Characteristics of important stopover locations for migrating birds: remote sensing with radar in the Great Lakes basin. Conserv Biol 23:440–448PubMedCrossRefGoogle Scholar
  17. Bridge ES, Pletschet SM, Fagin T, Chilson PB, Horton KG, Broadfoot KR, Kelly JF (2016) Persistence and habitat associations of Purple martin roosts quantified via weather surveillance radar. Landsc Ecol 31(1):43–53CrossRefGoogle Scholar
  18. Bruderer B (1969) Zur registrierung und interpretation von echosignaturen an einem 3-cm-zielverfolgungsradar. Der Ornithologologische Beobachter 66:70–88Google Scholar
  19. Bruderer B (1994) Nocturnal bird migration in the Negev (Israel) – a tracking radar study. Ostrich 65(2):204–212CrossRefGoogle Scholar
  20. Bruderer B (1997a) The study of bird migration by radar Part 1: the technical basis. Naturwissenschaften 84:1–8CrossRefGoogle Scholar
  21. Bruderer B (1997b) The study of bird migration by radar Part 2: major achievements. Naturwissenschaften 84:45–54CrossRefGoogle Scholar
  22. Bruderer B (1999) Three decades of tracking radar studies on bird migration in Europe and the Middle East. In: Leshem Y, Mandelik Y, Shamoun-Baranes J (eds) Proceedings international seminar on birds and flight safety in the Middle East, pp 107–142Google Scholar
  23. Bruderer B, Steidinger P (1972) Methods of quantitative and qualitative analysis of bird migration with a tracking radar. In: Galler SR, Schmidt-Koenig K, Slotow R (eds) Animal orientation and navigation. National Aeronautic and Space Administration, Washington, DC, pp 151–167Google Scholar
  24. Bruderer B, Peter D, Boldt A, Liechti F (2010) Wing-beat characteristics of birds recorded with tracking radar and cine camera. Ibis 152:272–291CrossRefGoogle Scholar
  25. Buderi R (1996) The invention that changed the world: how a small group of radar pioneers won the second world war and launched a technological revolution, Sloan technology series. Simon and Schuster, New YorkGoogle Scholar
  26. Buler JJ, Dawson DK (2014) Radar analysis of fall bird migration stopover sites in the northeastern U.S. Condor 116(3):357–370. CrossRefGoogle Scholar
  27. Buler JJ, Diehl RH (2009) Quantifying bird density during migratory stopover using weather surveillance radar. IEEE Trans Geosci Remote Sens 47(8):2741–2751CrossRefGoogle Scholar
  28. Cabrera-Cruz SA, Mabee TJ, Patraca RV (2013) Using theoretical flight speeds to discriminate birds from insects in radar studies. Condor 115(2):263–272.
  29. Chadwick RB, Gossard EE (1983) Radar remote sensing of the clear atmosphere – review and applications. Proc IEEE 71(6):738–753. CrossRefGoogle Scholar
  30. Chandrasekar V, Keränen R, Lim S, Moisseev D (2013) Recent advances in classification of observations from dual polarization weather radars. Atmos Res 119:97–111. CrossRefGoogle Scholar
  31. Chapman JW, Reynolds DR, Smith AD (2003) Vertical-looking radar: a new tool for monitoring high-altitude insect migration. Bioscience 53(5):503–511.[0503:VRANTF]2.0.CO;2.
  32. Chapman JW, Drake VA, Reynolds DR (2011) Recent insights from radar studies of insect flight. Annu Rev Entomol 56:337–356PubMedCrossRefGoogle Scholar
  33. Chilson PB, Frick WF, Kelly JF, Howard KW, Larkin RP, Diehl RH, Westrook JK, Kelly TA, Kunz TH (2012a) Partly cloudy with a chance of migration: weather, radars, and aeroecology. Bull Am Meteorol Soc 93(5):669–686. CrossRefGoogle Scholar
  34. Chilson PB, Frick WF, Stepanian PM, Shipley JR, Kunz TH, Kelly JF (2012b) Estimating animal densities in the aerosphere using weather radar: to Z or not to Z? Ecosphere 3(8).
  35. Conant J (2003) Tuxedo Park: a Wall Street Tycoon and The Secret Palace of science that changed the course of world war II. Simon and Schuster, New YorkGoogle Scholar
  36. Contreras RF, Frasier SJ (2008) High-resolution observations of insects in the atmospheric boundary layer. J Atmos Oceanic Tech 25(12):2176–2187. CrossRefGoogle Scholar
  37. Cooper BA, Day RH, Ritchie RJ, Cranor CL (1991) An improved marine radar system for studies of bird migration. J Field Ornithol 62:367–377Google Scholar
  38. Cooper BA, Raphael MG, Mack DE (2001) Radar-based monitoring of marbled murrelets. Condor 103(2):219–229CrossRefGoogle Scholar
  39. Crawford AB (1949) Radar reflections in the lower atmosphere. Proc IRE 37:404–405CrossRefGoogle Scholar
  40. Diehl RH (2013) The airspace is habitat. Trends Ecolol Evol 28(7):377–379. CrossRefGoogle Scholar
  41. Diehl RH, Larkin RP, Black JE (2003) Radar observations of bird migration over the Great Lakes. Auk 120(2):278–290CrossRefGoogle Scholar
  42. Dinevich L, Matsyura A, Leshem Y (2003) Temoporal characteristics of night bird migration above central Irael – a radar study. Acta Ornithol 38(2):103–110. CrossRefGoogle Scholar
  43. Dokter AM, Liechti F, Stark H, Delobbe L, Tabary P, Holleman I (2011) Bird migration flight altitudes studied by a network of operational weather radars. J R Soc Interface 8(54):30–43. PubMedCrossRefGoogle Scholar
  44. Dokter AM, Åkesson S, Beekhuis H, Bouten W, Buurma L, van Gasteren H, Holleman I (2013a) Twilight ascents of common swits, Apus apus, at dwan and dusk: acquisition of orientation cues. Anim Behav 85(3):545–552. CrossRefGoogle Scholar
  45. Dokter AM, Shamoun-Baranes J, Kemp MU, Tijm S, Holleman I (2013b) High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance. PLoS One 8(1):1–8. CrossRefGoogle Scholar
  46. Doren BMV, Sheldon D, Geevarghese J, Hochachka WM, Farnsworth A (2015) Autumn morning flights of migrant songbirds in the northeastern United States are linked to nocturnal migration and winds aloft. Auk 132(1):105–118. CrossRefGoogle Scholar
  47. Doviak RJ, Zrnić DS (1993) Doppler radar and weather observations, 2nd edn. Dover Publications, New YorkGoogle Scholar
  48. Drake VA, Reynolds DR (2012) Radar entomology. Centre for Agriculture and Biosciences InternationalGoogle Scholar
  49. Eastwood E (1967) Radar ornithology. Methuen & Co. Ltd, LondonGoogle Scholar
  50. Eastwood E, Rider GC (1966) Grouping of nocturnal migrants. Nature 211:1143–1146CrossRefGoogle Scholar
  51. Edwards J, Houghton EW (1959) Radar echoing area polar diagram of birds. Nature 184:1059CrossRefGoogle Scholar
  52. Frick WF, Stepanian PM, Kelly JF, Howard KW, Kuster CK, Kunz TH, Chilson PB (2012) Climate and weather impact timing of emergence in bats. PLoS One 7(8).
  53. Gauthreaux SA Jr (1970) Weather radar quantification of bird migration. Bioscience 20:17–20CrossRefGoogle Scholar
  54. Gauthreaux SA Jr (1971) A radar and direct visual study fo passerine spring migration in southern Louisiana. Auk 88:343–365CrossRefGoogle Scholar
  55. Gauthreaux SA Jr (1991) The flight behavior of migrating birds in changing wind fields: radar and visual analysis. Am Zool 31(1):187–204. CrossRefGoogle Scholar
  56. Gauthreaux SA Jr, Belser CG (1998) Displays of bird movements on the WSR-88D: patterns and quantification. Weather Forecast 13:453–464CrossRefGoogle Scholar
  57. Gauthreaux SA Jr, Livingston JW (2006) Monitoring bird migration with a fixed-beam radar and a thermal imaging camera. J Field Ornithol 77(3):319–328CrossRefGoogle Scholar
  58. Gauthreaux SA Jr, Livingston JW, Belser CG (2008) Detection and discrimination of fauna in the aerosphere using Doppler weather surveillance radar. Int Comp Biol 48(1):12–23CrossRefGoogle Scholar
  59. Glover KM, Hardy KR, Sullivan TGKWN, Michaels AS (1966) Radar observations of insects in free flight. Science 154:967–972PubMedCrossRefGoogle Scholar
  60. Harmata AR, Leighty GR, O’Neil EL (2003) A vehicle-mounted radar for dual-purpose monitoring of birds. Wildl Soc Bul 31(3):882–886Google Scholar
  61. Haykin S, Stehwien W, Deng C, Weber P, Mann R (1991) Classification of radar clutter in an air traffic control environment. Proc IEEE 79(6):742–772CrossRefGoogle Scholar
  62. Hedenström A, Alerstam T, Bächman J, Gudmundsson GA, Henningsson S, Kalrsson H, Rosen M, Strandberg R (2009) Radar observations of arctic bird migration in the Beringia region. Arctic 62(1):25–37.
  63. Horn JW, Kunz TH (2008) Analyzing NEXRAD Doppler radar images to assess nightly dispersal patterns and population trends in Brazilian free-tailed bats (Tadarida brasiliensis). Int Comp Biol 48:24–39CrossRefGoogle Scholar
  64. Horton KG, Doren BMV, Stepanian PM, Hochachka WM, Farnsworth A, Kelly JF (2016) Nocturnally migrating songbirds drift when they can and compensate when they must. Sci Rep 6:21249. PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hüppop O, Dierschke J, Exo KM, Fredrich E, Hill R (2006) Bird migration studies and potential collision risk with offshore wind turbines. Ibis 148:90–109. CrossRefGoogle Scholar
  66. Kelly JF, Shipley JR, Chilson PB, Howard KW, Frick WF, Kunz TH (2012) Quantifying animal phenology in the continental scale using NEXRAD weather radars. Ecosphere 3(32).–00,257.1
  67. Kocurek W, LaGrone A (1967) Radar cross-section of a meteorological model of a coherent-dot radar angel. J Atmos Sol Terr Phys 29(8):975–985.
  68. Konrad TG, Hicks JJ, Dobson EB (1968) Radar characteristics of birds in flight. Science 159:274–280PubMedCrossRefGoogle Scholar
  69. Lack D, Varley GC (1945) Detection of birds by radar. Nature 156:446–446CrossRefGoogle Scholar
  70. Lakshmanan V, Zhang J, Howard K (2010) A technique to censor biological echoes in radar reflectivity data. J Appl Meteorol Climatol 49(3):435–462CrossRefGoogle Scholar
  71. Lang TJ, Rutledge SA (2004) Observations of quasi-symmetric echo patterns in clear air with the CSU-CHILL polarimetric radar. J Atmos Oceanic Tech 21(8):1182–1189.<1182:OOQEPI>2.0.CO;2 CrossRefGoogle Scholar
  72. Larkin RP (1980) Transoceanic bird migration: evidence for detection of wind direction. Behav Ecol Sociobiol 6(3):229–232.
  73. Larkin RP, Diehl RH (2012) Radar techniques for wildlife biology. In: Silvy N (ed) The wildlife techniques manual: research, vol 1, 7th edn. The Wildlife Society, Baltimore, MD, pp 320–335Google Scholar
  74. Larkin RP, Evans WR, Diehl RH (2002) Nocturnal flight calls of dickcissels and Doppler radar echoes over south Texas in spring. J Field Ornithol 73(1):2–8CrossRefGoogle Scholar
  75. Lhermite RM (1966) Probing air motion by Doppler analysis of radar clear air returns. J Atmos Sci 23:575–591CrossRefGoogle Scholar
  76. Liechti F, Bruderer B, Paproth H (1995) Quantification of nocturnal bird migration by moonwatching – comparison with radar and infrared observations. J Field Ornithol 66(4):457–652Google Scholar
  77. Luke EP, Kollias P, Johnson KL, Clothiaux EE (2008) A technique for the automatic detection of insect clutter in cloud returns. J Atmos Oceanic Tech 25(9):1498–1513CrossRefGoogle Scholar
  78. Martin WJ, Shapiro A (2007) Discrimination of bird and insect radar echoes in clear air using high-resolution radars. J Atmos Oceanic Tech 24:1215–1230CrossRefGoogle Scholar
  79. Martinson LW (1973) A preliminary investigation of bird classification by doppler radar. Technical report NASA-CR-137457, National Aeronautic and Space Adminsitration, USAGoogle Scholar
  80. Martner BE, Moran KP (2001) Using cloud radar polarization measurements to evaluate stratus cloud and insect echoes. J Geophys Res Atmos 106(D5):4891–4897. CrossRefGoogle Scholar
  81. Melnikov VM, Lee RR, Langlieb NJ (2012) Resonance effects within S-band in echoes from birds. IEEE Geosci Remote Sens Lett 9(3):413–416. CrossRefGoogle Scholar
  82. Melnikov V, Leskinen M, Koistinen J (2014) Doppler velocities at orthogonal polarizations in radar echoes from insects and birds. IEEE Geosci Remote Sens Lett 11(3):592–596. CrossRefGoogle Scholar
  83. Melnikov VM, Istok MJ, Westbrook JK (2015) Asymmetric radar echo patterns from insects. J Atmos Oceanic Tech 32(4):659–674.
  84. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Geophys 25(3):377–445Google Scholar
  85. Mirkovic D, Stepainan PM, Kelly JF, Chilson PB (2016) Electromagnetic model reliably predicts radar scattering characteristics of airborne organisms. Nat Sci Rep 6:1–11. CrossRefGoogle Scholar
  86. Mueller EA, Larkin RP (1985) Insects observed using dual-polarization radar. J Atmos Oceanic Tech 2:49–54CrossRefGoogle Scholar
  87. Nebuloni R, Capsoni C, Vigorita V (2008) Quantifying bird migration by a high-resolution weather radar. IEEE Trans 46(6):1867–1875Google Scholar
  88. Nohara TJ, Eng B, Eng M, Weber P, Ukrainec A, Premji A, Jones G (2007) An overview of avian radar development – past, present and future. In: 2007 Bird Strike Committee – USA/Canada, 9th annual meeting, Kingston, Ontario, pp 1–8Google Scholar
  89. Nohara TJ, Beason RC, Weber P (2011) Using radar cross-section to enhance situational awareness tools for airport avian radars. Hum Wildl Interact 5(2):210–217Google Scholar
  90. O’Neal BJ, Stafford JD, Larkin RP (2015) Migrating ducks in inland North America ignore rivers as leading lines. Ibis 57(1):154–161. CrossRefGoogle Scholar
  91. Park HS, Ryzhkov AV, Zrnić DS, Kim KE (2009) The hydrometeor classification algorithm for the polarimetric WSR-88D: description and application to an MCS. Weather Forecast 24(3):730–748. CrossRefGoogle Scholar
  92. Plank VG (1956) A meteorological study of radar angels. Geophysical research papers, U.S. Department of Commerce, Office of Technical ServicesGoogle Scholar
  93. Plonczkier P, Simms I (2012) Radar monitoring of migrating pink-footed geese: behavioural responses to offshore wind farm development. J Appl Ecol 49(5):1187–1194. CrossRefGoogle Scholar
  94. Probert-Jones JR (1962) The radar equation in meteorlogy. Q J R Meteorol Soc 88(378):485–495CrossRefGoogle Scholar
  95. Richter JH, Jensen DR (1973) Radar cross-section measurements of insects. Proc IEEE 61:1176–1178Google Scholar
  96. Richter JH, Jesnen DR, Noonkester VR, Breasky JB, Stimmann MW, Wolf WW (1973) Remote radar sensing: atmospheric structure and insects. Science 180:1176–1178. PubMedCrossRefGoogle Scholar
  97. Riley JR (1985) Radar cross sections of insects. Proc IEEE 73(2):228–232CrossRefGoogle Scholar
  98. Riley JR, Reynolds DR (1990) Nocturnal grasshopper migration in West Africa. Philos Trans R Soc B 328:655–672CrossRefGoogle Scholar
  99. Rinehart RE (2010) Radar for meteorologists, 5th edn. Rinehart Publications, Columbia, MOGoogle Scholar
  100. Russell KR, Gauthreaux SA Jr (1998) Use of weather radar to characterize movements of roosting purple martins. Wildl Soc Bul 26(1):5–16Google Scholar
  101. Russell RW, Wilson JW (1997) Radar-observed “fine lines” in the optically clear boundary layer: reflectivity contributions from aerial plankton and its predators. Bound Lay Meteorol 83:235–262CrossRefGoogle Scholar
  102. Ryzhkov AV, Zrnić DS (2007) Depolarization in ice crystals and its effect on radar polarimetric measurements. J Atmos Oceanic Tech 24(7):1256–1267. CrossRefGoogle Scholar
  103. Schaefer GW (1968) Bird recognition by radar: a study in quantitative radar ornithology. In: Murton RK, Wright EN (eds) The problems of birds as pests. Academic Press, London, New York, pp 53–86CrossRefGoogle Scholar
  104. Schmaljohan H, Liechti F, Bächler E, Steuri T, Bruderer B (2008) Quantification of bird migration by radar – a detection probability problem. Ibis 150:342–355CrossRefGoogle Scholar
  105. Shamoun-Baranes J, Bouten W, van Loon EE (2010) Integrating meteorology into research on migration. Int Comp Biol.–13
  106. Shamoun-Baranes J, Dokter AM, van Gasteren H, van Loon EE, Leijnse H, Bouten W (2011) Birds flee en mass from New Year’s Eve fireworks. Behav Ecol.–5
  107. Shamoun-Baranes J, Alves JA, Bauer S, Dokter AM, Hüppop O, Koistinen J, Leijnse H, Liechti F, van Gasteren H, Chapman JW (2014) Continental-scale radar monitoring of the aerial movements of animals. Movement Ecol 2:9CrossRefGoogle Scholar
  108. Shamoun-Baranes J, Farnsworth A, Aelterman B, Alves JA, Azijn K, Bernstein G, Branco S, Desmet P, Dokter AM, Horton K, Kelling S, Kelly JF, Leijnse H, Rong J, Sheldon D, den Broeck WV, Meersche JKVD, Doren BMV, van Gasteren H (2016) Innovative visualizations shed light on avian nocturnal migration. PLoS One 11(8):e0160106. PubMedPubMedCentralCrossRefGoogle Scholar
  109. Stepanian PM, Horton KG (2015) Extracting migrant flight orientation profiles using polarimetric radar. IEEE Tran Geosci Remote Sens 53(12):6518–6528. CrossRefGoogle Scholar
  110. Stepanian PM, Chilson PB, Kelly JF (2014) An introduction to radar image processing in ecology. Methods Ecol Evol 5:730–738. CrossRefGoogle Scholar
  111. Taylor PD, Brzustowski JM, Matkovich C, Peckford ML, Wilson D (2010) radR: an open-source platform for acquiring and analysing data on biological targets observed by surveillance radar. BMC Ecol 10(22):1–8. Google Scholar
  112. Tolbert C, Straiton A, Britt C (1958) Phantom radar targets at millimeter radio wavelengths. IRE Trans Antennas Propag 6(4):380–384. CrossRefGoogle Scholar
  113. Van Den Broeke MS (2013) Polarimetric radar observations of biological scatterers in Hurricane Irene (2011) and Sandy (2012). J Atmos Oceanic Tech 30(12):2754–2767. CrossRefGoogle Scholar
  114. van Gasteren H, Holleman I, Bouten W, van Loon E, Shamoun-Baranes J (2008) Extracting bird migration information from C-band Doppler weather radars. Ibis 150:674–686CrossRefGoogle Scholar
  115. Vaughn CR (1974) Intraspecific wingbeat rate variability and species identification using tracking radar. In: Gauthreaux SA Jr (ed) Proceedings of a conference on the biological aspects of the bird/aircraft collision problem, Department of Zoology, Clemson University, Clemson, SC, pp 443–476Google Scholar
  116. Westbrook JK (2008) Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Int Comp Biol 48(1):99–106CrossRefGoogle Scholar
  117. Wilczak JM, Strauch RG, Martin FM, Weber BL, Meritt DA, Jordan JR, Wolfe DE, Lewis LK, Wuertz DB, Gaynor JE, McLaughlin SA, Rogers RR, Riddle AC, Dye TS (1995) Contamination of wind profiler data by migrating birds: characteristics of corrupted data and potential solutions. J Atmos Oceanic Tech 12(3):449–467CrossRefGoogle Scholar
  118. Williams TC, Williams JM (1980) A Pertson’s guide to radar ornithology? Am Birds 34:738–739Google Scholar
  119. Williams TC, Settel J, O’Mahoney P, Williams JM (1972) An ornithological radar. Am Birds 26:555–557Google Scholar
  120. Zakrajsek EJ, Bissonette JA (2001) Nocturnal bird-avoidance modeling with mobile-marine radar. In: Bird Strike Committee – USA/Canada, third joint annual meeting, Calgary, AB, pp 185–194Google Scholar
  121. Zaugg S, Saporta G, van Loon E, Schmaljohann H, Liechti F (2008) Automatic identification of bird targets with radar via patterns produced by wing flapping. J R Soc Interface 5(26):1041–1053PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zhang P, Liu S, Xu Q (2005) Identifying Doppler velocity contamination caused by migraging birds. Part I: feature extraction and quantification. J Atmos Oceanic Tech 22(8):1105–1113. CrossRefGoogle Scholar
  123. Zrnić DS, Ryzhkov AV (1998) Observations of insects and birds with polarimetric radar. IEEE Trans Geosci Remote Sens 36(2):661–668CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Phillip B. Chilson
    • 1
    Email author
  • Phillip M. Stepanian
    • 1
  • Jeffrey F. Kelly
    • 2
  1. 1.School of MeteorologyAdvanced Radar Research Center, and Center for Autonomous Sensing and SamplingNormanUSA
  2. 2.Oklahoma Biological Survey and Department of BiologyUniversity of OklahomaNormanUSA

Personalised recommendations