Historical Handwritten Text Images Word Spotting Through Sliding Window HOG Features

  • Federico BolelliEmail author
  • Guido Borghi
  • Costantino Grana
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10484)


In this paper we present an innovative technique to semi-automatically index handwritten word images. The proposed method is based on HOG descriptors and exploits Dynamic Time Warping technique to compare feature vectors elaborated from single handwritten words. Our strategy is applied to a new challenging dataset extracted from Italian civil registries of the XIX century. Experimental results, compared with some previously developed word spotting strategies, confirmed that our method outperforms competitors.


Word spotting Handwriting recognition Indexing 


  1. 1.
    Bolelli, F.: Indexing of historical document images: ad hoc dewarping technique for handwritten text. In: 13th Italian Research Conference on Digital Libraries, IRCDL, February 2017Google Scholar
  2. 2.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)CrossRefGoogle Scholar
  3. 3.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  4. 4.
    Gatos, B., Pratikakis, I., Ntirogiannis, K.: Segmentation based recovery of arbitrarily warped document images. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol. 2, pp. 989–993. IEEE (2007)Google Scholar
  5. 5.
    Grana, C., Baraldi, L., Bolelli, F.: Optimized connected components labeling with pixel prediction. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 431–440. Springer, Cham (2016). doi: 10.1007/978-3-319-48680-2_38 CrossRefGoogle Scholar
  6. 6.
    Kolcz, A., Alspector, J., Augusteijn, M., Carlson, R., Popescu, G.V.: A line-oriented approach to word spotting in handwritten documents. Pattern Anal. Appl. 3(2), 153–168 (2000)CrossRefGoogle Scholar
  7. 7.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  8. 8.
    Manmatha, R., Croft, W.: Word spotting: Indexing handwritten archives. In: Intelligent Multimedia Information Retrieval Collection, pp. 43–64 (1997)Google Scholar
  9. 9.
    Manmatha, R., Han, C., Riseman, E.M., Croft, W.B.: Indexing handwriting using word matching. In: Proceedings of the first ACM International Conference on Digital Libraries, pp. 151–159. ACM (1996)Google Scholar
  10. 10.
    Rath, T.M., Manmatha, R.: Features for word spotting in historical manuscripts. In: Proceedings of Seventh International Conference on Document Analysis and Recognition, pp. 218–222. IEEE (2003)Google Scholar
  11. 11.
    Rodriguez, J.A., Perronnin, F.: Local gradient histogram features for word spotting in unconstrained handwritten documents. In: Proceedings of 1st ICFHR, pp. 7–12 (2008)Google Scholar
  12. 12.
    Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)CrossRefGoogle Scholar
  13. 13.
    Terasawa, K., Nagasaki, T., Kawashima, T.: Eigenspace method for text retrieval in historical document images. In: Proceedings of Eighth International Conference on Document Analysis and Recognition, pp. 437–441. IEEE (2005)Google Scholar
  14. 14.
    Terasawa, K., Tanaka, Y.: Slit style hog feature for document image word spotting. In: 10th International Conference on Document Analysis and Recognition, ICDAR 2009, pp. 116–120. IEEE (2009)Google Scholar
  15. 15.
    Tomai, C.I., Zhang, B., Govindaraju, V.: Transcript mapping for historic handwritten document images. In: Proceedings of Eighth International Workshop on Frontiers in Handwriting Recognition, pp. 413–418. IEEE (2002)Google Scholar
  16. 16.
    Wahl, F.M., Wong, K.Y., Casey, R.G.: Block segmentation and text extraction in mixed text/image documents. Comput. Graph. Image Process. 20(4), 375–390 (1982)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Federico Bolelli
    • 1
    Email author
  • Guido Borghi
    • 1
  • Costantino Grana
    • 1
  1. 1.Dipartimento di Ingegneria “Enzo Ferrari”Università degli Studi di Modena e Reggio EmiliaModenaItaly

Personalised recommendations