Automatic Multi-seed Detection for MR Breast Image Segmentation

  • Albert Comelli
  • Alessandro Bruno
  • Maria Laura Di Vittorio
  • Federica Ienzi
  • Roberto Lagalla
  • Salvatore Vitabile
  • Edoardo Ardizzone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10484)


In this paper an automatic multi-seed detection method for magnetic resonance (MR) breast image segmentation is presented. The proposed method consists of three steps: (1) pre-processing step to locate three regions of interest (axillary and sternal regions); (2) processing step to detect maximum concavity points for each region of interest; (3) breast image segmentation step. Traditional manual segmentation methods require radiological expertise and they usually are very tiring and time-consuming. The approach is fast because the multi-seed detection is based on geometric properties of the ROI. When the maximum concavity points of the breast regions have been detected, region growing and morphological transforms complete the segmentation of breast MR image. In order to create a Gold Standard for method effectiveness and comparison, a dataset composed of 18 patients is selected, accordingly to three expert radiologists of University of Palermo Policlinico Hospital (UPPH). Each patient has been manually segmented. The proposed method shows very encouraging results in terms of statistical metrics (Sensitivity: 95.22%; Specificity: 80.36%; Precision: 98.05%; Accuracy: 97.76%; Overlap: 77.01%) and execution time (4.23 s for each slice).


Automatic segmentation Breast MR Maximum concavity points Seed detection 


  1. 1.
    Giannini, V., Vignati, A., Morra, L., Persano, D., Brizzi, D., Carbonaro, L., Bert, A., Sardanelli, F., Regge, D.: A fully automatic algorithm for segmentation of the breasts in DCE-MR images. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3146–3149. IEEE (2010)Google Scholar
  2. 2.
    Mann, R.M., Balleyguier, C., Baltzer, P.A., Bick, U., Colin, C., Cornford, E., Evans, A., Fallenberg, E., Forrai, G., Fuchsjäger, M.H., et al.: Breast MRI: EUSOBI recommendations for women’s information. Eur. Radiol. 25(12), 3669–3678 (2015)CrossRefGoogle Scholar
  3. 3.
    Giger, M.L., Karssemeijer, N., Schnabel, J.A.: Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer. Annu. Rev. Biomed. Eng. 15, 327–357 (2013)CrossRefGoogle Scholar
  4. 4.
    Roxanis, I., Colling, R.: Use of digital image analysis for outcome prediction in breast cancer. Diagn. Pathol. 1(8) (2016)Google Scholar
  5. 5.
    Brooksby, B., Pogue, B.W., Jiang, S., Dehghani, H., Srinivasan, S., Kogel, C., Tosteson, T.D., Weaver, J., Poplack, S.P., Paulsen, K.D.: Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided nearinfrared spectral tomography. Proc. Natl. Acad. Sci. 103(23), 8828–8833 (2006)CrossRefGoogle Scholar
  6. 6.
    Patel, B.C., Sinha, G.: An adaptive k-means clustering algorithm for breast image segmentation. Int. J. Comput. Appl. 10(4), 35–38 (2010)Google Scholar
  7. 7.
    Wu, S., Weinstein, S.P., Conant, E.F., Schnall, M.D., Kontos, D.: Automated chest wall line detection for whole-breast segmentation in sagittal breast MR images. Med. Phys. 40(4), 042301 (2013)CrossRefGoogle Scholar
  8. 8.
    Lin, M., Chen, J.H., Wang, X., Chan, S., Chen, S., Su, M.Y.: Template-based automatic breast segmentation on MRI by excluding the chest region. Med. Phys. 40(12), 122301 (2013)CrossRefGoogle Scholar
  9. 9.
    Wang, L., Chitiboi, T., Meine, H., Günther, M., Hahn, H.K.: Principles and methods for automatic and semi-automatic tissue segmentation in MRI data. Magn. Reson. Mater. Phys. Biol. Med. 29(2), 95–110 (2016)CrossRefGoogle Scholar
  10. 10.
    Wang, L., Platel, B., Ivanovskaya, T., Harz, M., Hahn, H.K.: Fully automatic breast segmentation in 3D breast MRI. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1024–1027. IEEE (2012)Google Scholar
  11. 11.
    Khazen, M., Warren, R.M., Boggis, C.R., Bryant, E.C., Reed, S., Warsi, I., Pointon, L.J., Kwan-Lim, G.E., Thompson, D., Eeles, R., et al.: A pilot study of compositional analysis of the breast and estimation of breast mammographic density using three-dimensional T1-weighted magnetic resonance imaging. Cancer Epidemiol. Prev. Biomark. 17(9), 2268–2274 (2008)CrossRefGoogle Scholar
  12. 12.
    Lee, N.A., Rusinek, H., Weinreb, J., Chandra, R., Toth, H., Singer, C., Newstead, G.: Fatty and fibroglandular tissue volumes in the breasts of women 20–83 years old: comparison of X-ray mammography and computer-assisted MR imaging. AJR. Am. J. Roentgenol. 168(2), 501–506 (1997)CrossRefGoogle Scholar
  13. 13.
    Wang, L., Filippatos, K., Friman, O., Hahn, H.K.: Fully automated segmentation of the pectoralis muscle boundary in breast MR images. In: SPIE Medical Imaging, International Society for Optics and Photonics, p. 796309 (2011)Google Scholar
  14. 14.
    Koenig, M., Laue, H., Boehler, T., Peitgen, H.O.: Automatic segmentation of relevant structures in DCE MR mammograms. In: Medical Imaging, International Society for Optics and Photonics, p. 65141S (2007)Google Scholar
  15. 15.
    Nie, K., Chen, J.H., Chan, S., Chau, M.K.I., Yu, H.J., Bahri, S., Tseng, T., Nalcioglu, O., Su, M.Y.: Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI. Med. Phys. 35(12), 5253–5262 (2008)CrossRefGoogle Scholar
  16. 16.
    Xiaohua, C., Brady, M., Lo, J.L.-C., Moore, N.: Simultaneous segmentation and registration of contrast-enhanced breast MRI. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 126–137. Springer, Heidelberg (2005). doi: 10.1007/11505730_11 CrossRefGoogle Scholar
  17. 17.
    Gubern-Mérida, A., Kallenberg, M., Martí, R., Karssemeijer, N.: Segmentation of the pectoral muscle in breast MRI using atlas-based approaches. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 371–378. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33418-4_46 CrossRefGoogle Scholar
  18. 18.
    Gubern-Mérida, A., Kallenberg, M., Mann, R.M., Marti, R., Karssemeijer, N.: Breast segmentation and density estimation in breast MRI: a fully automatic framework. IEEE J. Biomed. Health Inform. 19(1), 349–357 (2015)CrossRefGoogle Scholar
  19. 19.
    Ortiz, C.G., Martel, A.: Automatic atlas-based segmentation of the breast in MRI for 3D breast volume computation. Med. Phys. 39(10), 5835–5848 (2012)CrossRefGoogle Scholar
  20. 20.
    Wu, S., Weinstein, S.P., Conant, E.F., Kontos, D.: Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method. Medical physics 40(12), 122302 (2013)CrossRefGoogle Scholar
  21. 21.
    Agnello, L., Comelli, A., Vitabile, S.: Feature dimensionality reduction for mammographic report classification. In: Pop, F., Kołodziej, J., Di Martino, B. (eds.) Resource Management for Big Data Platforms. CCN, pp. 311–337. Springer, Cham (2016). doi: 10.1007/978-3-319-44881-7_15 Google Scholar
  22. 22.
    Comelli, A., Agnello, L., Vitabile, S.: An ontology-based retrieval system for mammographic reports. In: 2015 IEEE Symposium on Computers and Communication (ISCC), pp. 1001–1006. IEEE (2015)Google Scholar
  23. 23.
    Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of brain MR images for voxel-based morphometry analysis. Int. J. Imaging Syst. Technol. 26(2), 136–150 (2016)CrossRefGoogle Scholar
  24. 24.
    Rosset, A., Spadola, L., Ratib, O.: Osirix: an open-source software for navigating in multidimensional DICOM images. J. digit. Imaging 17(3), 205–216 (2004)CrossRefGoogle Scholar
  25. 25.
    Warfield, S.K., Zou, K.H., Wells, W.M.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imaging 23(7), 903–921 (2004)CrossRefGoogle Scholar
  26. 26.
    Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Albert Comelli
    • 1
  • Alessandro Bruno
    • 1
  • Maria Laura Di Vittorio
    • 2
  • Federica Ienzi
    • 2
  • Roberto Lagalla
    • 2
  • Salvatore Vitabile
    • 2
  • Edoardo Ardizzone
    • 1
  1. 1.Dipartimento dell’Innovazione Industriale e Digitale (DIID)Università di PalermoPalermoItaly
  2. 2.Dipartimento di Biopatologia e Biotecnologie MedicheUniversità di PalermoPalermoItaly

Personalised recommendations