Advertisement

A System for Autonomous Landing of a UAV on a Moving Vehicle

  • Sebastiano Battiato
  • Luciano Cantelli
  • Fabio D’Urso
  • Giovanni Maria Farinella
  • Luca Guarnera
  • Dario Guastella
  • Carmelo Donato Melita
  • Giovanni Muscato
  • Alessandro Ortis
  • Francesco Ragusa
  • Corrado Santoro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10484)

Abstract

This paper describes the approach employed to implement the autonomous landing of an Unmanned Aerial Vehicle (UAV) upon a moving ground vehicle. We consider an application scenario in which a target, made of a visual pattern, is mounted on the top of a ground vehicle which roams in an arena using a certain path and velocity; the UAV is asked to find the ground vehicle, by detecting the visual pattern, and then to track it in order to perform the approach and finalize the landing. To this aim, Computer Vision is adopted to perform both detection and tracking of the visual target; the algorithm used is based on the TLD (Tracking-Learning-Detection) approach, suitably integrated with an Hough Transform able to improve the precision of the identification of the 3D coordinates of the pattern. The output of the Computer Vision algorithm is then exploited by a Kalman filter which performs the estimation of the trajectory of the ground vehicle in order to let the UAV track, follow and approach it. The paper describes the software and hardware architecture of the overall application running on the UAV. The application described has been practically used with success in the context of the “Mohamed Bin Zayed” International Robotic Challenge (MBZIRC) which took place in March 2017 in Abu Dhabi.

References

  1. 1.
  2. 2.
    Serra, P., Cunha, R., Hamel, T., Cabecinhas, D., Silvestre, C.: Landing of a quadrotor on a moving target using dynamic image-based visual servo control. IEEE Trans. Robot. 32(6), 1524–1535 (2016)CrossRefGoogle Scholar
  3. 3.
    Jin, S., Zhang, J., Shen, L., Li, T.: On-board vision autonomous landing techniques for quadrotor: a survey. In: IEEE 35th Chinese Control Conference (CCC), pp. 10284–10289, July 2016Google Scholar
  4. 4.
    Amidi, O., Kanade, T., Miller, R.: Vision-based autonomous helicopter research at Carnegie Mellon robotics institute 1991–1997. American Helicopter Society (1998)Google Scholar
  5. 5.
    Cantelli, L., Laudani, P., Melita, C.D., Muscato, G.: UAV/UGV cooperation to improve navigation capabilities of a mobile robot in unstructured environments. In: Proceedings of CLAWAR 2016, London, September 2016Google Scholar
  6. 6.
    Cantelli, L., Mangiameli, M., Melita, C.D., Muscato, G.: UAV/UGV cooperation for surveying operations in humanitarian demining. In: 11th IEEE International Symposium on Safety Security and Rescue Robotics, 21–26 October, Linkoping, Sweden (2013)Google Scholar
  7. 7.
    Cantelli, L., Lo Presti, M., Mangiameli, M., Melita, C.D., Muscato, G.: Autonomous cooperation between UAV and UGV to improve navigation and environmental monitoring in rough environments. In: 10th International Symposium on Humanitarian Demining coupled with the 11th IARP WS HUDEM2013, 23 April 2013, ibenik, Croatia (2013)Google Scholar
  8. 8.
    De Benedetti, M., D’Urso, F., Messina, F., Pappalardo, G., Santoro, C.: UAV-based aerial monitoring: a performance evaluation of a self-organising flocking algorithm. In: Proceedings of 2015 IEEE International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC) (2015)Google Scholar
  9. 9.
    De Benedetti, M., D’Urso, F., Messina, F., Pappalardo, G., Santoro, C.: Self-Organising UAVs for wide area fault-tolerant aerial monitoring. In: WOA2015 CEUR Workshop Proceedings, Napoli, pp. 142–145, 17–19 Giugno 2015. ISSN 1613–0073Google Scholar
  10. 10.
    Hough, P.V.C.: Method and means for recognizing complex patterns. US Patent 3,069,654 (1962)Google Scholar
  11. 11.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 1409–1422Google Scholar
  12. 12.
    Battiato, S., et al.: An integrated system for vehicle tracking and classification. Expert Syst. Appl. 42(21), 7263–7275 (2015)Google Scholar
  13. 13.
    Smeulders, A.W.M., et al.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468 (2014)Google Scholar
  14. 14.
    Maggio, E., Cavallaro, A.: Video Tracking: Theory and Practice. Wiley, Hoboken (2011)Google Scholar
  15. 15.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. (CSUR) 38(4), 13 (2006)Google Scholar
  16. 16.
    Babenko, B., Yang, M.-H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)CrossRefGoogle Scholar
  17. 17.
    Bao, C., et al.: Real time robust l1 tracker using accelerated proximal gradient approach. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2012)Google Scholar
  18. 18.
    Black, M.J., Jepson, A.D.: Eigentracking: robust matching and tracking of articulated objects using a view-based representation. Int. J. Comput. Vis. 26(1), 63–84 (1998)CrossRefGoogle Scholar
  19. 19.
    Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88682-2_19 CrossRefGoogle Scholar
  20. 20.
    Hare, S., et al.: Struck: structured output tracking with kernels. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 2096–2109 (2016)Google Scholar
  21. 21.
    Kwon, J., Lee, K.M.: Visual tracking decomposition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sebastiano Battiato
    • 1
  • Luciano Cantelli
    • 2
  • Fabio D’Urso
    • 1
  • Giovanni Maria Farinella
    • 1
  • Luca Guarnera
    • 1
  • Dario Guastella
    • 2
  • Carmelo Donato Melita
    • 2
  • Giovanni Muscato
    • 2
  • Alessandro Ortis
    • 1
  • Francesco Ragusa
    • 1
  • Corrado Santoro
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversity of CataniaCataniaItaly
  2. 2.Dipartimento di Ingegneria Elettrica, Elettronica e InformaticaUniversity of CataniaCataniaItaly

Personalised recommendations