Exploring Content Virality in Facebook: A Semantic Based Approach

  • Reema Aswani
  • Arpan Kumar Kar
  • Shalabh Aggarwal
  • P. Vigneswara Ilavarsan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10595)


In the current era of digitization specifically with the advent of Web 2.0, social media has become an imposing force in shaping up the way people perceive and react to the information around them. Social media platforms have empowered people to share almost instant feedback on the content posted by individuals and organizations facilitating two way interaction and better engagement among them. This continuous interaction among individuals and organizations creates huge amount of user-generated content (UGC) and associated tokens. This study attempts to understand various semantics that might affect the virality of Facebook posts. Several pages have been identified and shortlisted from domains including e-commerce, manufacturing, services and media. A total of 53,340 Facebook posts comprising of 37, 38, 168 words have been extracted using Facebook Graph API from each of the mentioned domains and subsequently analyzed using NOSQL databases. Further, the derived tokens are semantically grouped and used to gather insights by mapping to existing virality frameworks for identifying and ranking the ones that might be affecting the virality of a post. Findings indicate the virality of content shared has positive correlation with direct brand engagement, promotional offers, freebies and direct user mentions.


Social media Information propagation Content virality Semantic analysis Facebook analytics 


  1. 1.
    Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans. Web (TWEB) 1(1), 5 (2007)CrossRefGoogle Scholar
  2. 2.
    Mangold, W.G., Faulds, D.J.: Social media: the new hybrid element of the promotion mix. Bus. Horiz. 52(4), 357–365 (2009)CrossRefGoogle Scholar
  3. 3.
    Facebooking, the rage on college campuses. The Seattle Times. Accessed 31 Mar 2017
  4. 4.
    Junco, R.: The relationship between frequency of Facebook use, participation in Facebook activities, and student engagement. Comput. Educ. 58(1), 162–171 (2012)CrossRefGoogle Scholar
  5. 5.
    Lampe, C., Ellison, N.B., Steinfield, C.: Changes in use and perception of Facebook. In: Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work, pp. 721–730. ACM, San Diego (2008)Google Scholar
  6. 6.
    Hennig-Thurau, T., Gwinner, K.P., Walsh, G., Gremler, D.D.: Electronic word-of-mouth via consumer-opinion platforms: what motivates consumers to articulate themselves on the internet? J. Interact. Mark. 18(1), 38–52 (2004)CrossRefGoogle Scholar
  7. 7.
    Waters, R.D., Burnett, E., Lamm, A., Lucas, J.: Engaging stakeholders through social networking: how nonprofit organizations are using Facebook. Pub. Relat. Rev. 35(2), 102–106 (2009)CrossRefGoogle Scholar
  8. 8.
    Hanna, R., Rohm, A., Crittenden, V.L.: We’re all connected: the power of the social media ecosystem. Bus. Horiz. 54(3), 265–273 (2011)CrossRefGoogle Scholar
  9. 9.
    Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in facebook. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, pp. 37–42. ACM, Barcelona (2009)Google Scholar
  10. 10.
    Qualman, E.: Socialnomics: How Social Media Transforms the Way We Live and Do Business. Wiley, New Jersey (2010)Google Scholar
  11. 11.
    Handayani, P.W., Lisdianingrum, W.: Impact analysis on free online marketing using social network Facebook: case study SMEs in Indonesia. In: 2011 International Conference on Advanced Computer Science and Information System (ICACSIS), pp. 171–176. IEEE, Jakarta (2011)Google Scholar
  12. 12.
    Stelzner, M.A.: Social media marketing industry report. Soc. Media Exam. 41, 1–10 (2011)Google Scholar
  13. 13.
    Beeler, A.: Virus without a cure. Advert. Age 71(17), 54–55 (2000)Google Scholar
  14. 14.
    Quercia, D., Lambiotte, R., Stillwell, D., Kosinski, M., Crowcroft, J.: The personality of popular facebook users. In: Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, pp. 955–964. ACM, Seattle (2012)Google Scholar
  15. 15.
    Sabate, F., Berbegal-Mirabent, J., Cañabate, A., Lebherz, P.R.: Factors influencing popularity of branded content in Facebook fan pages. Eur. Manag. J. 32(6), 1001–1011 (2014)CrossRefGoogle Scholar
  16. 16.
    Berthon, P.R., Pitt, L.F., Plangger, K., Shapiro, D.: Marketing meets Web 2.0, social media, and creative consumers: implications for international marketing strategy. Bus. Horiz. 55(3), 261–271 (2012)CrossRefGoogle Scholar
  17. 17.
    Berger, J., Milkman, K.: Social transmission, emotion, and the virality of online content. Wharton research paper 106 (2010)Google Scholar
  18. 18.
    Berger, J., Milkman, K.L.: What makes online content viral? J. Mark. Res. 49(2), 192–205 (2012)CrossRefGoogle Scholar
  19. 19.
    Kaplan, A.M., Haenlein, M.: Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horiz. 53(1), 59–68 (2010)CrossRefGoogle Scholar
  20. 20.
    Shirky, C.: The political power of social media: technology, the public sphere, and political change. Foreign Aff. 90, 28–41 (2011)Google Scholar
  21. 21.
    Patino, A., Pitta, D.A., Quinones, R.: Social media’s emerging importance in market research. J. Consum. Mark. 29(3), 233–237 (2012)CrossRefGoogle Scholar
  22. 22.
    Nagle, T., Pope, A.: Understanding social media business value, a prerequisite for social media selection. J. Decis. Syst. 22(4), 283–297 (2013)CrossRefGoogle Scholar
  23. 23.
    Alhabash, S., McAlister, A.R., Rifon, N.J., Quilliam, E.T., Sternadori, M., Richards, J.I.: A different take on virality: the relationship among motivations, uses, and viral behavioral intentions on Facebook and Twitter. In: American Academy of Advertising. Conference, Proceedings (Online), p. 24. American Academy of Advertising (2013)Google Scholar
  24. 24.
    Weng, L., Menczer, F., Ahn, Y.Y.: Virality prediction and community structure in social networks. Scientific reports 3 (2013)Google Scholar
  25. 25.
    Iribarren, J.L., Moro, E.: Affinity paths and information diffusion in social networks. Soc. Netw. 33(2), 134–142 (2011)CrossRefGoogle Scholar
  26. 26.
    Tucker, C.: Virality, Network Effects and Advertising (2011)Google Scholar
  27. 27.
    Centola, D.: The spread of behavior in an online social network experiment. Science 329(5996), 1194–1197 (2010)CrossRefGoogle Scholar
  28. 28.
    Morales, A.J., Borondo, J., Losada, J.C., Benito, R.M.: Efficiency of human activity on information spreading on Twitter. Soc. Netw. 39, 1–11 (2014)CrossRefGoogle Scholar
  29. 29.
    Roelens, I., Baecke, P., Benoit, D.F.: Identifying influencers in a social network: the value of real referral data. Decis. Support Syst. 91, 25–36 (2016)CrossRefGoogle Scholar
  30. 30.
    Guerini, M., Strapparava, C., Özbal, G.: Exploring text virality in social networks. In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (ICWSM 2011). AAAI Publications, Barcelona (2011)Google Scholar
  31. 31.
    Mills, A.J.: Virality in social media: the SPIN framework. J. Publ. Aff. 12(2), 162–169 (2012)CrossRefGoogle Scholar
  32. 32.
    Ienco, D., Bonchi, F., Castillo, C.: The meme ranking problem: maximizing microblogging virality. In: IEEE International Conference on Data Mining Workshops, pp. 328–335. IEEE, Sydney(2010)Google Scholar
  33. 33.
    Weng, L., Flammini, A., Vespignani, A., Menczer, F.: Competition among memes in a world with limited attention. Sci. Rep. 2, 1–8 (2012)CrossRefGoogle Scholar
  34. 34.
    Guerini, M., Staiano, J., Albanese, D.: Exploring image virality in google plus. In: International Conference on Social Computing (SocialCom), pp. 671–678. IEEE, Alexandria (2013)Google Scholar
  35. 35.
    Weng, L., Menczer, F., Ahn, Y.Y.: Predicting successful memes using network and community structure. In: Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media, pp. 535–544. AAAI Publications (2014)Google Scholar
  36. 36.
    Deza, A., Parikh, D.: Understanding image virality. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1818–1826. IEEE, Boston (2015)Google Scholar
  37. 37.
    Zubcsek, P.P., Chowdhury, I., Katona, Z.: Information communities: the network structure of communication. Soc. Netw. 38, 50–62 (2014)CrossRefGoogle Scholar
  38. 38.
    Harrigan, N., Achananuparp, P., Lim, E.P.: Influentials, novelty, and social contagion: the viral power of average friends, close communities, and old news. Soc. Netw. 34(4), 470–480 (2012)CrossRefGoogle Scholar
  39. 39.
    Coursaris, C.K., Van Osch, W., Balogh, B.A.: A social media marketing typology: classifying brand facebook page messages for strategic consumer engagement. In: Proceedings of the 21st European Conference on Information Systems (ECIS), p. 46. Association for Information Systems, Utrecht (2013)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Reema Aswani
    • 1
  • Arpan Kumar Kar
    • 1
  • Shalabh Aggarwal
    • 1
  • P. Vigneswara Ilavarsan
    • 1
  1. 1.Indian Institute of TechnologyDelhiIndia

Personalised recommendations