Advertisement

A Fully Convolutional Network for Salient Object Detection

  • Simone Bianco
  • Marco Buzzelli
  • Raimondo Schettini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10485)

Abstract

In this paper we address the task of salient object detection without requiring an explicit object class recognition. To this end, we propose a solution that exploits intermediate activations of a Fully Convolutional Neural Network previously trained for the recognition of 1,000 object classes, in order to gather generic object information at different levels of resolution. This is done by using both convolution and convolution-transpose layers, and combining their activations to generate a pixel-level salient object segmentation. Experiments are conducted on a standard benchmark that involves seven heterogeneous datasets. On average our solution outperforms the state of the art according to multiple evaluation measures.

Keywords

Salient object detection Fully convolutional neural network Foreground/background segmentation 

References

  1. 1.
    Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: Computer vision and pattern recognition. In: IEEE Conference on VPR 2009, pp. 1597–1604. IEEE (2009)Google Scholar
  2. 2.
    Alpert, S., Galun, M., Brandt, A., Basri, R.: Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 315–327 (2012)CrossRefGoogle Scholar
  3. 3.
    Aytekin, C., Kiranyaz, S., Gabbouj, M.: Automatic object segmentation by quantum cuts. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 112–117. IEEE (2014)Google Scholar
  4. 4.
    Bianco, S., Buzzelli, M., Mazzini, D., Schettini, R.: Deep learning for logo recognition. Neurocomputing 245, 23–30 (2017). http://dx.doi.org/10.1016/j.neucom.2017.03.051 CrossRefGoogle Scholar
  5. 5.
    Borji, A.: What is a salient object? a dataset and a baseline model for salient object detection. IEEE Trans. Image Process. 24(2), 742–756 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, T., Lin, L., Liu, L., Luo, X., Li, X.: Disc: deep image saliency computing via progressive representation learning. IEEE Trans. Neural Netw. Learn. Syst. 27(6), 1135–1149 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cheng, M.M., Mitra, N.J., Huang, X., Hu, S.M.: Salientshape: group saliency in image collections. Vis. Comput. 30(4), 443–453 (2014)CrossRefGoogle Scholar
  9. 9.
    Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)CrossRefGoogle Scholar
  10. 10.
    Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., Wu, F.: Background prior-based salient object detection via deep reconstruction residual. IEEE Trans. Circ. Syst. Video Technol. 25(8), 1309–1321 (2015)CrossRefGoogle Scholar
  11. 11.
    Hayhoe, M., Ballard, D.: Eye movements in natural behavior. Trends Cogn. Sci. 9(4), 188–194 (2005)CrossRefGoogle Scholar
  12. 12.
    Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2(3), 194–203 (2001)CrossRefGoogle Scholar
  13. 13.
    Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection: a discriminative regional feature integration approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2083–2090 (2013)Google Scholar
  14. 14.
    Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint (2014). arXiv:1412.6980
  15. 15.
    Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5455–5463 (2015)Google Scholar
  16. 16.
    Li, Y., Hou, X., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–287 (2014)Google Scholar
  17. 17.
    Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.Y.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353–367 (2011)CrossRefGoogle Scholar
  18. 18.
    Liu, Z., Zou, W., Le Meur, O.: Saliency tree: a novel saliency detection framework. IEEE Trans. Image Process. 23(5), 1937–1952 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  20. 20.
    Movahedi, V., Elder, J.H.: Design and perceptual validation of performance measures for salient object segmentation. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 49–56. IEEE (2010)Google Scholar
  21. 21.
    Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. In: ACM Transactions on Graphics (TOG), vol. 23, pp. 309–314. ACM (2004)Google Scholar
  22. 22.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint (2014). arXiv:1409.1556
  23. 23.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  24. 24.
    Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1155–1162 (2013)Google Scholar
  25. 25.
    Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)Google Scholar
  26. 26.
    Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mech, R.: Minimum barrier salient object detection at 80 fps. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1404–1412 (2015)Google Scholar
  27. 27.
    Zhao, R., Ouyang, W., Li, H., Wang, X.: Saliency detection by multi-context deep learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1265–1274 (2015)Google Scholar
  28. 28.
    Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2814–2821 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Simone Bianco
    • 1
  • Marco Buzzelli
    • 1
  • Raimondo Schettini
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanItaly

Personalised recommendations