PRNU-Based Forgery Localization in a Blind Scenario

  • Davide Cozzolino
  • Francesco Marra
  • Giovanni Poggi
  • Carlo SansoneEmail author
  • Luisa Verdoliva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10485)


The Photo Response Non-Uniformity (PRNU) noise can be regarded as a camera fingerprint and used, accordingly, for source identification, device attribution and forgery localization. To accomplish these tasks, the camera PRNU is typically assumed to be known in advance or reliably estimated. However, there is a growing interest for methods that can work in a real-word scenario, where these hypotheses do not hold anymore. In this paper we analyze a PRNU-based framework for forgery localization in a blind scenario. The framework comprises four main steps: PRNU-based blind image clustering, parameter estimation, device attribution, and forgery localization. Each of these steps impacts on the final outcome of the analysis. The aim of this paper is to assess the overall performance of the proposed framework and how it depends on the individual steps.


  1. 1.
    Al-Ani, M., Khelifi, F.: On the SPN estimation in image forensics: a systematic empirical evaluation. IEEE Trans. Inf. Forensics Secur. 12(5), 1067–1081 (2017)CrossRefGoogle Scholar
  2. 2.
    Amerini, I., Caldelli, R., Crescenzi, P., Mastio, A.D., Marino, A.: Blind image clustering based on the normalized cuts criterion for camera identification. Sig. Process. Image Commun. 29(8), 831–843 (2014)CrossRefGoogle Scholar
  3. 3.
    Bloy, G.J.: Blind camera fingerprinting and image clustering. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 532–534 (2008)CrossRefGoogle Scholar
  4. 4.
    Chakraborty, S., Kirchner, M.: PRNU-based forgery detection with discriminative random fields. In: International Symposium on Electronic Imaging: Media Watermarking, Security, and Forensics, February 2017Google Scholar
  5. 5.
    Chen, M., Fridrich, J., Goljan, M., Lukás, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3(1), 74–90 (2008)CrossRefGoogle Scholar
  6. 6.
    Chierchia, G., Cozzolino, D., Poggi, G., Sansone, C., Verdoliva, L.: Guided filtering for PRNU-based localization of small-size image forgeries. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6231–6235. May 2014Google Scholar
  7. 7.
    Chierchia, G., Parrilli, S., Poggi, G., Sansone, C., Verdoliva, L.: On the influence of denoising in PRNU based forgery detection. In: 2nd ACM workshop on Multimedia in Forensics, Security and Intelligence, pp. 117–122 (2010)Google Scholar
  8. 8.
    Chierchia, G., Parrilli, S., Poggi, G., Sansone, C., Verdoliva, L.: PRNU-based detection of small size image forgeries. In: International Conference on Digital Signal Processing, pp. 1–6. July 2011Google Scholar
  9. 9.
    Chierchia, G., Poggi, G., Sansone, C., Verdoliva, L.: A Bayesian-MRF approach for PRNU-based image forgery detection. IEEE Trans. Inf. Forensics Secur. 9(4), 554–567 (2014)CrossRefGoogle Scholar
  10. 10.
    Cozzolino, D., Gragnaniello, D., Verdoliva, L.: Image forgery localization through the fusion of camera-based, feature-based and pixel-based techniques. In: IEEE Conference on Image Processing, pp. 5237–5241. October 2014Google Scholar
  11. 11.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Goljan, M.: Digital camera identification from images – estimating false acceptance probability. In: Kim, H.-J., Katzenbeisser, S., Ho, A.T.S. (eds.) IWDW 2008. LNCS, vol. 5450, pp. 454–468. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04438-0_38 CrossRefGoogle Scholar
  13. 13.
    Goljan, M., Fridrich, J., Filler, T.: Large scale test of sensor fingerprint camera identification. In: Proceedings SPIE, vol. 7254, pp. 72540I–72540I-12 (2009)Google Scholar
  14. 14.
    Korus, P., Huang, J.: Multi-scale analysis strategies in PRNU-based tampering localization. IEEE Trans. Inf. Forensics Secur. 12(4), 809–824 (2017)CrossRefGoogle Scholar
  15. 15.
    Li, C.T.: Source camera identification using enhanced sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 5(2), 280–287 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, C.T.: Unsupervised classification of digital images using enhanced sensor pattern noise. In: IEEE Int. Symp. on Circuits and Systems, pp. 3429–3432 (2010)Google Scholar
  17. 17.
    Lukàš, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)CrossRefGoogle Scholar
  18. 18.
    Marra, F., Poggi, G., Sansone, C., Verdoliva, L.: Blind PRNU-based image clustering for source identification. IEEE Trans. Inf. Forensics Secur. 12(9), 2197–2211 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Davide Cozzolino
    • 1
  • Francesco Marra
    • 1
  • Giovanni Poggi
    • 1
  • Carlo Sansone
    • 1
    Email author
  • Luisa Verdoliva
    • 1
  1. 1.DIETI - University of Naples Federico IINaplesItaly

Personalised recommendations