Advertisement

Two More Strategies to Speed Up Connected Components Labeling Algorithms

  • Federico BolelliEmail author
  • Michele Cancilla
  • Costantino Grana
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10485)

Abstract

This paper presents two strategies that can be used to improve the speed of Connected Components Labeling algorithms. The first one operates on optimal decision trees considering image patterns occurrences, while the second one articulates how two scan algorithms can be parallelized using multi-threading. Experimental results demonstrate that the proposed methodologies reduce the total execution time of state-of-the-art two scan algorithms.

Keywords

Connected components labeling Binary decision trees Parallelization Optimization 

References

  1. 1.
    Alnuweiri, H.M., Prasanna, V.K.: Parallel architectures and algorithms for image component labeling. IEEE Trans. Pattern Anal. Mach. Intell. 14(10), 1014–1034 (1992)CrossRefGoogle Scholar
  2. 2.
    Baltieri, D., Vezzani, R., Cucchiara, R.: 3DPeS: 3D people dataset for surveillance and forensics. In: Proceedings of the 2011 Joint ACM Workshop on Human Gesture and Behavior Understanding, pp. 59–64. ACM (2011)Google Scholar
  3. 3.
    Cabaret, L., Lacassagne, L., Etiemble, D.: Parallel light speed labeling: an efficient connected component labeling algorithm for multi-core processors. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3486–3489. IEEE (2015)Google Scholar
  4. 4.
    Chang, F., Chen, C.J., Lu, C.J.: A linear-time component-labeling algorithm using contour tracing technique. Comput. Vis. Image Underst. 93(2), 206–220 (2004)CrossRefGoogle Scholar
  5. 5.
    Dong, F., Irshad, H., Oh, E.Y., Lerwill, M.F., Brachtel, E.F., Jones, N.C., Knoblauch, N.W., Montaser-Kouhsari, L., Johnson, N.B., Rao, L.K., et al.: Computational pathology to discriminate benign from malignant intraductal proliferations of the breast. PLoS ONE 9(12), e114885 (2014)CrossRefGoogle Scholar
  6. 6.
    Grana, C., Baraldi, L., Bolelli, F.: Optimized connected components labeling with pixel prediction. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 431–440. Springer, Cham (2016). doi: 10.1007/978-3-319-48680-2_38 CrossRefGoogle Scholar
  7. 7.
    Grana, C., Bolelli, F., Baraldi, L., Vezzani, R.: YACCLAB - yet another connected components labeling benchmark. In: 23rd International Conference on Pattern Recognition, ICPR (2016)Google Scholar
  8. 8.
    Grana, C., Borghesani, D., Cucchiara, R.: Optimized block-based connected components labeling with decision trees. IEEE Trans. Image Process. 19(6), 1596–1609 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Grana, C., Montangero, M., Borghesani, D.: Optimal decision trees for local image processing algorithms. Pattern Recogn. Lett. 33(16), 2302–2310 (2012)CrossRefGoogle Scholar
  10. 10.
    Haralick, R.: Some neighborhood operators. In: Onoe, M., Preston, K., Rosenfeld, A. (eds.) Real-Time Parallel Computing, pp. 11–35. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  11. 11.
    He, L., Chao, Y., Suzuki, K.: A linear-time two-scan labeling algorithm. Int. Conf. Image Process. 5, 241–244 (2007)Google Scholar
  12. 12.
    He, L., Zhao, X., Chao, Y., Suzuki, K.: Configuration-transition-based connected-component labeling. IEEE Trans. Image Process. 23(2), 943–951 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lewis, D., Agam, G., Argamon, S., Frieder, O., Grossman, D., Heard, J.: Building a test collection for complex document information processing. In: Proceedings of 29th Annual International ACM SIGIR Conference, pp. 665–666 (2006)Google Scholar
  14. 14.
    Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, Heidelberg (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Rosenfeld, A., Kak, A.: Digital Picture Processing. Computer Science and Applied Mathematics, vol. 1. Academic Press, Cambridge (1982)zbMATHGoogle Scholar
  16. 16.
    Schumacher, H., Sevcik, K.C.: The synthetic approach to decision table conversion. Commun. ACM 19(6), 343–351 (1976)CrossRefzbMATHGoogle Scholar
  17. 17.
    Wu, K., Otoo, E., Suzuki, K.: Two strategies to speed up connected component labeling algorithms. Technical Report LBNL-59102, Lawrence Berkeley National Laboratory (2005)Google Scholar
  18. 18.
    Wu, K., Otoo, E., Suzuki, K.: Optimizing two-pass connected-component labeling algorithms. Pattern Anal. Appl. 12(2), 117–135 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Federico Bolelli
    • 1
    Email author
  • Michele Cancilla
    • 1
  • Costantino Grana
    • 1
  1. 1.Dipartimento di Ingegneria “Enzo Ferrari”Università Degli Studi di Modena e Reggio EmiliaModenaItaly

Personalised recommendations