Advertisement

Description of Breast Morphology Through Bag of Normals Representation

  • Dario Allegra
  • Filippo L. M. Milotta
  • Diego Sinitò
  • Filippo Stanco
  • Giovanni Gallo
  • Wafa Taher
  • Giuseppe Catanuto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10485)

Abstract

In this work we focus on digital shape analysis of breast models to assist breast surgeon for medical and surgical purposes. A clinical procedure for female breast digital scan is proposed. After a manual ROI definition through cropping, the meshes are automatically processed. The breasts are represented exploiting “bag of normals” representation, resulting in a 64-d descriptor. PCA is computed and the obtained first 2 principal components are used to plot the breasts shape into a 2D space. We show how the breasts subject to a surgery change their representation in this space and provide a cue about the error in this estimation. We believe that the proposed procedure represents a valid solution to evaluate the results of surgeries, since one of the most important goal of the specialists is to symmetrically reconstruct breasts and an objective tool to measure the result is currently missing.

Keywords

3D scanning Breast surgery Histogram of normals Principal Component Analysis 

Notes

Acknowledgment

The authors would like to thank the “Azienda Ospedaliera Cannizzaro”, the “Associazione Santantonese per la lotta ai tumori (ASLT)” and the female volunteers for their contribution as models.

References

  1. 1.
    Huber, D., Akinci, B., Tang, P., Adan, A., Okorn, B., Xiong, X.: Using laser scanners for modeling and analysis in architecture, engineering, and construction. In: Conference on Information Sciences and Systems (CISS), pp. 1–6, March 2010Google Scholar
  2. 2.
    Stoll, J., Novotny, P., Howe, R., Dupont, P.: Real-time 3D ultrasound-based servoing of a surgical instrument. In: International Conference on Robotics and Automation (ICRA), pp. 613–618, May 2006Google Scholar
  3. 3.
    Bottino, A., De Simone, M., Laurentini, A., Sforza, C.: A new 3-D tool for planning plastic surgery. IEEE Trans. Biomed. Eng. 59(12), 3439–3449 (2012)CrossRefGoogle Scholar
  4. 4.
    Treleaven, P., Wells, J.: 3D body scanning and healthcare applications. Computer 40(7), 28–34 (2007)CrossRefGoogle Scholar
  5. 5.
    Dai, Y., Tian, J., Dong, D., Yan, G., Zheng, H.: Real-time visualized freehand 3D ultrasound reconstruction based on GPU. IEEE Trans. Inf. Technol. Biomed. 14(6), 1338–1345 (2010)CrossRefGoogle Scholar
  6. 6.
    Stanco, F., Tanasi, D., Allegra, D., Milotta, F.L.M., Lamagna, G., Monterosso, G.: Virtual anastylosis of Greek sculpture as museum policy for public outreach and cognitive accessibility. J. Electron. Imaging 26(1), 011025 (2017)CrossRefGoogle Scholar
  7. 7.
    Laing, R., Leon, M., Isaacs, J.: Monuments visualization: from 3D scanned data to a holistic approach, an application to the city of Aberdeen. In: International Conference on Information Visualisation, pp. 512–517, July 2015Google Scholar
  8. 8.
    Nguyen, C.V., Fripp, J., Lovell, D.R., Furbank, R., Kuffner, P., Daily, H., Sirault, X.: 3D scanning system for automatic high-resolution plant phenotyping. In: International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8, November 2016Google Scholar
  9. 9.
    Gallo, G., Allegra, D., Atani, Y.G., Milotta, F.L.M., Stanco, F., Catanuto, G.: Breast shape parametrization through planar projections. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 135–146. Springer, Cham (2016). doi: 10.1007/978-3-319-48680-2_13 CrossRefGoogle Scholar
  10. 10.
    Structure Sensor Website. http://structure.io/. Accessed Apr 2017
  11. 11.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Phil. Mag. 2(6), 559–572 (1901)CrossRefzbMATHGoogle Scholar
  12. 12.
    Allen, B., Curless, B., Popovi, Z.: The space of human body shapes: reconstruction and parameterization from range scans. In: International Conference on Computer Graphics and Interactive Techniques, pp. 587–594 (2003)Google Scholar
  13. 13.
    Gallo, G., Guarnera, G.C., Catanuto, G.: Human breast shape analysis using PCA. In: Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS) (2010)Google Scholar
  14. 14.
    Smith Jr., D.J., Palin Jr., W.E., Katch, V.L., Bennett, J.E.: Breast volume and anthropomorphic measurements: normal values. Plast. Reconstr. Surg. 78(3), 331–335 (1986)CrossRefGoogle Scholar
  15. 15.
    Farinella, G.M., Impoco, G., Gallo, G., Spoto, S., Catanuto, G.: Unambiguous analysis of woman breast shape for plastic surgery outcome evaluation. In: 4th Conference Eurographics Italian Chapter (2006)Google Scholar
  16. 16.
    Catanuto, G., Gallo, G., Farinella, G.M., Impoco, G., Nava, M.B., Pennati, A., Spano, A.: Breast shape analysis on three-dimensional models. In: Third European Conference on Plastic and Reconstructive Surgery of the Breast (2005)Google Scholar
  17. 17.
    Galdino, G.M., Nahabedian, M., Chiaramonte, M., Geng, J.Z., Klatsky, S., Manson, P.: Clinical applications of three-dimensional photography in breast surgery. Plast. Reconstr. Surg. 110(1), 58–70 (2002)CrossRefGoogle Scholar
  18. 18.
    Nahabedian, M.Y., Galdino, G.: Symmetrical breast reconstruction: is there a role for three-dimensional digital photography? Plast. Reconstr. Surg. 112(6), 1582–1590 (2003)CrossRefGoogle Scholar
  19. 19.
    Lee, H.Y., Hong, K., Kim, E.A.: Measurement protocol of womens nude breasts using a 3D scanning technique. Appl. Ergon. 35, 353–360 (2004)CrossRefGoogle Scholar
  20. 20.
    Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)CrossRefzbMATHGoogle Scholar
  21. 21.
    Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: Meshlab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference, vol. 2008, pp. 129–136 (2008)Google Scholar
  22. 22.
    Weisstein, E.: Rodrigues’ Rotation Formula. http://mathworld.wolfram.com/rodriguesrotationformula.html. Accessed Apr 2017

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dario Allegra
    • 1
  • Filippo L. M. Milotta
    • 1
  • Diego Sinitò
    • 1
  • Filippo Stanco
    • 1
  • Giovanni Gallo
    • 1
  • Wafa Taher
    • 2
  • Giuseppe Catanuto
    • 3
  1. 1.Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly
  2. 2.International Fellowship Querci Della RovereLondonUK
  3. 3.Multidisciplinary Breast UnitAzienda Ospedaliera CannizzaroCataniaItaly

Personalised recommendations