Advertisement

A Dynamic Network Flow Model for Interdependent Infrastructure and Supply Chain Networks with Uncertain Asset Operability

  • Nils GoldbeckEmail author
  • Panagiotis Angeloudis
  • Washington Y. Ochieng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10572)

Abstract

In globally integrated supply chain networks, initially local disruptions can quickly escalate to major problems due to complex interdependencies and cascading failure. This paper is particularly concerned with the role of infrastructure failure causing or exacerbating such cascading effects in supply chain networks. To improve the understanding of infrastructure and supply chain interdependency, we propose a novel modelling approach that captures the dynamics of both asset operability and network flows. The method uses a Markov process to generate operability scenarios and a multistage stochastic linear program to assign dynamic flows and optimise network capacities. The model takes into account different mechanisms of cascading failure, namely failure propagation, delay of recovery and unavailability of production inputs. A numeric example demonstrates how the method can be used to assess and optimises the resilience of a global supply chain against multiple hazards and infrastructure failure.

Keywords

Supply chain resilience Interdependency Network flow modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Norrman, A., Jansson, U.: Ericsson’s proactive supply chain risk management approach after a serious sub-supplier accident. Int. J. Phys. Distrib. Logist. Manag. 34, 434–456 (2004)CrossRefGoogle Scholar
  2. 2.
    Matsuo, H.: Implications of the Tohoku earthquake for Toyota’s coordination mechanism: Supply chain disruption of automotive semiconductors. Int. J. Prod. Econ. 161, 217–227 (2015)CrossRefGoogle Scholar
  3. 3.
    The City of New York (2013) A Stronger, More Resilient New York. http://www.nyc.gov/html/sirr/html/report/report.shtml (accessed May 11, 2017)
  4. 4.
    Koetse, M.J., Rietveld, P.: The impact of climate change and weather on transport: An overview of empirical findings. Transp. Res. Part D Transp. Environ. 14, 205–221 (2009)CrossRefGoogle Scholar
  5. 5.
    van Vliet, M.T.H., Yearsley, J.R., Ludwig, F., Vögele, S., Lettenmaier, D.P., Kabat, P.: Vulnerability of US and European electricity supply to climate change. Nat. Clim. Chang. 2, 676–681 (2012)CrossRefGoogle Scholar
  6. 6.
    Geunes, J., Pardalos, P.M.: Network Optimization in Supply Chain Management and Financial Engineering: An Annotated Bibliography. Networks 42, 66–84 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Wilson, M.C.: The impact of transportation disruptions on supply chain performance. Transp. Res. Part E Logist. Transp. Rev. 43, 295–320 (2007)CrossRefGoogle Scholar
  8. 8.
    Geng, L., Xiao, R., Xu, X.: Research on MAS-Based Supply Chain Resilience and Its Self-Organized Criticality. Discret. Dyn. Nat. Soc. 2014, 1–14 (2014)CrossRefGoogle Scholar
  9. 9.
    Gillen, D., Hasheminia, H.: Measuring reliability of transportation networks using snapshots of movements in the network – An analytical and empirical study. Transp. Res. Part B Methodol. 93, 808–824 (2016)CrossRefGoogle Scholar
  10. 10.
    Nagurney, A., Daniele, P., Shukla, S.: A supply chain network game theory model of cybersecurity investments with nonlinear budget constraints. Ann. Oper. Res. 248, 405–427 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Heckmann, I., Comes, T., Nickel, S.: A critical review on supply chain risk - Definition, measure and modeling. Omega 52, 119–132 (2015)CrossRefGoogle Scholar
  12. 12.
    Tukamuhabwa, B.R., Stevenson, M., Busby, J., Zorzini, M.: Supply chain resilience: definition, review and theoretical foundations for further study. Int. J. Prod. Res. 53, 5592–5623 (2015)CrossRefGoogle Scholar
  13. 13.
    Kamalahmadi, M., Mellat Parast, M.: A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research. Int. J. Prod. Econ. 171, 116–133 (2016)CrossRefGoogle Scholar
  14. 14.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall (1993)Google Scholar
  15. 15.
    Snyder, L.V., Scaparra, M.P., Daskin, M.S., Church, R.L.: Planning for disruptions in supply chain networks. In: TutORials Oper Res INFORMS, pp. 234–257 (2006)Google Scholar
  16. 16.
    Glockner, G.D., Nemhauser, G.L.: A dynamic network flow problem with uncertain arc capacities: Formulation and problem structure. Oper. Res. 48, 233–242 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Tsiakis, P., Shah, N., Pantelides, C.C.: Design of Multi-echelon Supply Chain Networks under Demand Uncertainty. Ind. Eng. Chem. Res. 40, 3585–3604 (2001). doi: 10.1021/ie0100030 CrossRefGoogle Scholar
  18. 18.
    Lu, M., Huang, S., Shen, Z.J.M.: Product substitution and dual sourcing under random supply failures. Transp. Res. Part B Methodol. 45, 1251–1265 (2011)CrossRefGoogle Scholar
  19. 19.
    Sadghiani, N.S., Torabi, S.A., Sahebjamnia, N.: Retail supply chain network design under operational and disruption risks. Transp. Res. Part E Logist. Transp. Rev. 75, 95–114 (2015)CrossRefGoogle Scholar
  20. 20.
    Xu, D., Chen, Z., Yang, L.: Scenario tree generation approaches using K-means and LP moment matching methods. J. Comput. Appl. Math. 236, 4561–4579 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    King, A., Wallace, S.: Modeling with Stochastic Programming. Springer (2012)Google Scholar
  22. 22.
    Rausand, M., Høyland, A.: System reliability theory: models, statistical methods, and applications, 2nd ed. John Wiley & Sons (2004)Google Scholar
  23. 23.
    Rahnamay-Naeini, M., Hayat, M.M.: Cascading Failures in Interdependent Infrastructures: An Interdependent Markov-Chain Approach. IEEE Trans. Smart Grid 7, 1997–2006 (2016)CrossRefGoogle Scholar
  24. 24.
    Son, K.S., Kim, D.H., Kim, C.H., Kang, H.G.: Study on the systematic approach of Markov modeling for dependability analysis of complex fault-tolerant features with voting logics. Reliab. Eng. Syst. Saf. 150, 44–57 (2016)CrossRefGoogle Scholar
  25. 25.
    Lee II, E.E., Mitchell, J.E., Wallace, W.A.: Restoration of Services in Interdependent Infrastructure Systems: A Network Flows Approach. IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev. 37, 1303–1317 (2007)CrossRefGoogle Scholar
  26. 26.
    Holden, R., Val, D.V., Burkhard, R., Nodwell, S.: A network flow model for interdependent infrastructures at the local scale. Saf. Sci. 53, 51–60 (2013)CrossRefGoogle Scholar
  27. 27.
    Sen, A., Balakrishnan, N.: Convolution of geometrics and a reliability problem. Stat. Probab. Lett. 43, 421–426 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Cadwallader, L.C.: Review of Maintenance and Repair Times for Components in Technological Facilities Components in Technological Facilities (2012). https://inldigitallibrary.inl.gov/sites/sti/sti/5554588.pdf (accessed May 11, 2017)
  29. 29.
    Pukite, J., Pukite, P.: Modeling for Reliability Analysis: Markov Modeling for Reliability, Maintainability, Safety, and Supportability Analyses of Complex Systems. Wiley (1998)Google Scholar
  30. 30.
    Smith, D.J.: Reliability, Maintainability and Risk: Practical Methods for Engineers, 8th ed. Butterworth-Heinemann (2011)Google Scholar
  31. 31.
    Willems, S.P.: Real-World Multiechelon Supply Chains Used for Inventory Optimization. Manuf. Serv. Oper. Manag. 10, 19–23 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nils Goldbeck
    • 1
    Email author
  • Panagiotis Angeloudis
    • 1
  • Washington Y. Ochieng
    • 1
  1. 1.Centre for Transport Studies (CTS)Imperial College LondonLondonUK

Personalised recommendations