Visual Analytics and Similarity Search: Concepts and Challenges for Effective Retrieval Considering Users, Tasks, and Data

  • Daniel SeebacherEmail author
  • Johannes Häußler
  • Manuel Stein
  • Halldor Janetzko
  • Tobias Schreck
  • Daniel A. Keim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10609)


A major challenge of the contemporary information age is the overwhelming and increasing data amount, especially when looking for specific information. Searching for relevant information is no longer manually possible, but has to rely on automatic methods, specifically, similarity search. From a formal perspective, similarity search can be seen as the problem of finding entities, which are considered to be similar to a query with respect to certain describing features. The question which features or which weighted combination of features to use for a given query creates a need for semi-automatic methods to address the needs of diverse users. Furthermore, the quality of the results of a similarity search is more than effectiveness, measured by precision and recall. The user ideally needs to trust the results and understand how they were computed. We propose to apply Visual Analytics methodologies, for synergistic cooperation of user and algorithms, to integrate three key dimensions of similarity search: users, tasks, and data for effective search. However, there exists a gap in knowledge how user, task as well as the available data influence each other and the similarity search. In this concept paper, we envision how Visual Analytics can be used to tackle current challenges of similarity search.


Similarity search Recommender systems Visual analytics 


  1. 1.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 191–226. Springer, Boston, MA (2015). doi: 10.1007/978-1-4899-7637-6_6 CrossRefGoogle Scholar
  2. 2.
    Amar, R., Eagan, J., Stasko, J.: Low-level components of analytic activity in information visualization. In: 2005 IEEE Symposium on Information Visualization, INFOVIS 2005, pp. 111–117. IEEE (2005)Google Scholar
  3. 3.
    Amatriain, X., Jaimes, A., Oliver, N., and Pujol, J. M. Data mining methods for recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 39–71. Springer, Boston (2011). doi: 10.1007/978-0-387-85820-3_2
  4. 4.
    Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “Nearest Neighbor” meaningful? In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1999). doi: 10.1007/3-540-49257-7_15 CrossRefGoogle Scholar
  5. 5.
    Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)CrossRefGoogle Scholar
  6. 6.
    Covington, P., Adams, J., Sargin, E.: Deep neural networks for YouTube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 191–198. ACM (2016)Google Scholar
  7. 7.
    Endert, A., Fox, S., Maiti, D., North, C.: The semantics of clustering: analysis of user-generated spatializations of text documents. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, pp. 555–562. ACM (2012)Google Scholar
  8. 8.
    He, C., Parra, D., Verbert, K.: Interactive recommender systems: a survey of the state of the art and future research challenges and opportunities. Expert Syst. Appl. 56, 9–27 (2016)CrossRefGoogle Scholar
  9. 9.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5–53 (2004)CrossRefGoogle Scholar
  10. 10.
    Holmstrom, J.E.: Section III. Opening plenary session. In: The Royal Society Scientific Information Conference. Royal Society (1948)Google Scholar
  11. 11.
    Houle, M.E., Sakuma, J.: Fast approximate similarity search in extremely high-dimensional data sets. In: 2005 Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, pp. 619–630. IEEE (2005)Google Scholar
  12. 12.
    Keim, D., Kohlhammer, J., Ellis, G., Mansmann, F.: Mastering the information age solving problems with visual analytics. Eurographics Association (2010)Google Scholar
  13. 13.
    Lau, A.Y., Coiera, E.W.: Do people experience cognitive biases while searching for information? J. Am. Med. Inform. Assoc. 14(5), 599–608 (2007)CrossRefGoogle Scholar
  14. 14.
    Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: state of the art and challenges. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2(1), 1–19 (2006)CrossRefGoogle Scholar
  15. 15.
    Liu, K., Bellet, A., Sha, F.: Similarity learning for high-dimensional sparse data. In: AISTATS (2015)Google Scholar
  16. 16.
    Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)CrossRefGoogle Scholar
  17. 17.
    O’Mahony, M.P., Hurley, N.J., Silvestre, G.: Detecting noise in recommender system databases. In: Proceedings of the 11th International Conference on Intelligent User Interfaces, pp. 109–115. ACM (2006)Google Scholar
  18. 18.
    Picault, J., Ribiere, M., Bonnefoy, D., Mercer, K.: How to get the recommender out of the lab? In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 333–365. Springer, Boston (2011). doi: 10.1007/978-0-387-85820-3_10 CrossRefGoogle Scholar
  19. 19.
    Rauber, P.E., Fadel, S.G., Falcao, A.X., Telea, A.C.: Visualizing the hidden activity of artificial neural networks. IEEE Trans. Visual Comput. Graphics 23(1), 101–110 (2017)CrossRefGoogle Scholar
  20. 20.
    Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 1–34. Springer, Boston, MA (2015). doi: 10.1007/978-1-4899-7637-6_1 CrossRefGoogle Scholar
  21. 21.
    Sacha, D., Boesecke, I., Fuchs, J., Keim, D.A.: Analytic behavior and trust building in visual analytics. In: Proceedings of the Eurographics/IEEE VGTC Conference on Visualization: Short Papers, pp. 143–147. Eurographics Association (2016)Google Scholar
  22. 22.
    Sacha, D., Stoffel, A., Stoffel, F., Kwon, B.C., Ellis, G., Keim, D.A.: Knowledge generation model for visual analytics. IEEE Trans. Visual Comput. Graphics 20(12), 1604–1613 (2014)CrossRefGoogle Scholar
  23. 23.
    Seebacher, D., Stein, M., Janetzko, H., Keim, D.A., Retrieval, P.: A multi-modal visual analytics approach. In: Andrienko, N., Sedlmair, M., (eds.) EuroVis Workshop on Visual Analytics (EuroVA), pp. 013–017. The Eurographics Association (2016)Google Scholar
  24. 24.
    Shardanand, U., Maes, P.: Social information filtering: algorithms for automating word of mouth. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 210–217. ACM Press/Addison-Wesley Publishing Co. (1995)Google Scholar
  25. 25.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)CrossRefGoogle Scholar
  26. 26.
    Swearingen, K., Sinha, R.: Beyond algorithms: an HCI perspective on recommender systems. In: ACM SIGIR 2001 Workshop on Recommender Systems, vol. 13, pp. 1–11. Citeseer (2001)Google Scholar
  27. 27.
    Yi, J.S., Ah Kang, Y., Stasko, J.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Visual Comput. Graphics 13(6), 1224–1231 (2007)CrossRefGoogle Scholar
  28. 28.
    Zahálka, J., Worring, M.: Towards interactive, intelligent, and integrated multimedia analytics. In: 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 3–12. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Daniel Seebacher
    • 1
    Email author
  • Johannes Häußler
    • 1
  • Manuel Stein
    • 1
  • Halldor Janetzko
    • 2
  • Tobias Schreck
    • 3
  • Daniel A. Keim
    • 1
  1. 1.University of KonstanzKonstanzGermany
  2. 2.University of ZurichZürichSwitzerland
  3. 3.TU GrazGrazAustria

Personalised recommendations