Advertisement

Optimization in the Space of Smooth Shapes

  • Kathrin WelkerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10589)

Abstract

The theory of shape optimization problems constrained by partial differential equations is connected with the differential-geometric structure of the space of smooth shapes.

Notes

Acknowledgement

This work has been partly supported by the German Research Foundation within the priority program SPP 1962 under contract number Schu804/15-1.

References

  1. 1.
    Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bauer, M., Harms, P., Michor, P.M.: Sobolev metrics on shape space of surfaces. J. Geom. Mech. 3(4), 389–438 (2011)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Berggren, M.: A unified discrete–continuous sensitivity analysis method for shape optimization. In: Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Périaux, J., Pironneau, O. (eds.) Applied and Numerical Partial Differential Equations. Computational Methods in Applied Sciences, vol. 15, pp. 25–39. Springer, Dordrecht (2010). doi: 10.1007/978-90-481-3239-3_4 CrossRefGoogle Scholar
  4. 4.
    Céa, J.: Conception optimale ou identification de formes calcul rapide de la dérivée directionelle de la fonction coût. RAIRO Modelisation mathématique et analyse numérique 20(3), 371–402 (1986)Google Scholar
  5. 5.
    Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. Advances in Design and Control, 2nd edn., vol. 22. SIAM (2001)Google Scholar
  6. 6.
    Gangl, P., Laurain, A., Meftahi, H., Sturm, K.: Shape optimization of an electric motor subject to nonlinear magnetostatics. SIAM J. Sci. Comput. 37(6), B1002–B1025 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Ito, K., Kunisch, K., Peichl, G.H.: Variational approach to shape derivatives. ESAIM Control Optim. Calc. Var. 14(3), 517–539 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Kriegl, A., Michor, P.W.: The Convient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society (1997)Google Scholar
  9. 9.
    Laurain, A., Sturm, K.: Domain expression of the shape derivative and application to electrical impedance tomography. Technical report No. 1863, Weierstraß-Institut für angewandte Analysis und Stochastik, Berlin (2013)Google Scholar
  10. 10.
    Michor, P.M., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245 (2005)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Michor, P.M., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8(1), 1–48 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Michor, P.M., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1), 74–113 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
  14. 14.
    Paganini, A.: Approximate shape gradients for interface problems. In: Pratelli, A., Leugering, G. (eds.) New Trends in Shape Optimization. ISNM, vol. 166, pp. 217–227. Springer, Cham (2015). doi: 10.1007/978-3-319-17563-8_9 CrossRefGoogle Scholar
  15. 15.
    Pantz, O.: Sensibilitè de l’èquation de la chaleur aux sauts de conductivitè. Comptes Rendus Mathematique de l’Académie des Sciences 341(5), 333–337 (2005)Google Scholar
  16. 16.
    Schmidt, S., Wadbro, E., Berggren, M.: Large-scale three-dimensional acoustic horn optimization. SIAM J. Sci. Comput. 38(6), B917–B940 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Schulz, V.H., Siebenborn, M., Welker, K.: Structured inverse modeling in parabolic diffusion problems. SIAM J. Control Optim. 53(6), 3319–3338 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Schulz, V.H., Siebenborn, M., Welker, K.: Efficient PDE constrained shape optimization based on Steklov-Poincaré type metrics. SIAM J. Optim. 26(4), 2800–2819 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Siebenborn, M., Welker, K.: Computational aspects of multigrid methods for optimization in shape spaces. SIAM J. Sci. Comput. (2016). SubmittedGoogle Scholar
  20. 20.
    Sokolowski, J., Zolésio, J.-P.: Introduction to Shape Optimization. Computational Mathematics, vol. 16. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  21. 21.
    Sturm, K.: Shape differentiability under non-linear PDE constraints. In: Pratelli, A., Leugering, G. (eds.) New Trends in Shape Optimization. ISNM, vol. 166, pp. 271–300. Springer, Cham (2015). doi: 10.1007/978-3-319-17563-8_12 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsTrier UniversityTrierGermany

Personalised recommendations