Quality Standards for Recycled Water: Opuntia ficus-indica as Sorbent Material

  • Marcella BarberaEmail author
  • Giovanni Gurnari
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


In recent years, increased industrial and agricultural activities and the correlated population growth led to overexploitation of natural resources and the increased generation of various types of pollutants. For these reasons, the hazardous pollution of wastewater is one of the most important environmental problems worldwide. A wide range of wastewater treatment technologies are available; however, some disadvantages are often reported. Hence, there is a constant need to search for an efficient, low-cost and alternative wastewater treatment. Recently, several biosolids have been considered for pollutant removal from wastewaters, including Opuntia ficus-indica. This chapter focuses on wastewater treatment strategies involving material parts in sewage containing high levels of chemical oxygen demand and turbidity, heavy metals and pesticides.


Coagulation Flocculation Heavy metal Opuntia ficus-indica Pesticide Turbidity Wastewater 



Biochemical oxygen demand


Chemical oxygen demand




Enthalpy change


Ferric chloride


Fourier-transform infrared


Gibbs free energy change


Opuntia ficus-indica


  1. 1.
    Gupta VK, Nayak A (2012) Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem Eng J 180:81–90. doi: 10.1016/j.cej.2011.11.006 CrossRefGoogle Scholar
  2. 2.
    Bhatnagar A, Minocha AK (2006) Conventional and non-conventional adsorbents for removal of pollutants from water-a review. Indian J Chem Technol 13:203–217Google Scholar
  3. 3.
    Gupta VK (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manage 90(8):2313–2342. doi:  10.1016/j.jenvman.2008.11.017
  4. 4.
    Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interface Sci 193:24–34. doi: 10.1016/j.cis.2013.03.003 CrossRefGoogle Scholar
  5. 5.
    Srinivasan A, Viraraghavan T (2010) Decolorization of dye wastewaters by biosorbents: a review. J Environ Manage 91(10):1915–1929. doi: 10.1016/j.jenvman.2010.05.003 CrossRefGoogle Scholar
  6. 6.
    Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418. doi: 10.1016/j.jenvman.2010.11.011 CrossRefGoogle Scholar
  7. 7.
    Farooq U, Kozinski JA, Khan MA, Athar M (2010) Biosorption of heavy metal ions using wheat based biosorbents–a review of the recent literature. Bioresour Technol 101(14):5043–5053. doi: 10.1016/j.biortech.2010.02.030 CrossRefGoogle Scholar
  8. 8.
    Nharingo T, Moyo M (2016) Application of Opuntia ficus-indica in bioremediation of wastewaters. A critical review. J Environ Manage 166:55–72. doi: 10.1016/j.jenvman.2015.10.005 CrossRefGoogle Scholar
  9. 9.
    Vishali S, Karthikeyan R (2015) Cactus Opuntia (ficus-indica): an eco-friendly alternative coagulant in the treatment of paint effluent. Desalin Water Treat 56(6):1489–1497. doi: 10.1080/19443994.2014.945487 CrossRefGoogle Scholar
  10. 10.
    De Leo M, De Abreu MB, Pawlowska AM, Cioni PL, Braca A (2010) Profiling the chemical content of Opuntia ficus-indica flowers by HPLC–PDA-ESI-MS and GC/EIMS analyses. Phytochem Lett 3(1):48–52. doi: 10.1016/j.phytol.2009.11.004 CrossRefGoogle Scholar
  11. 11.
    Barka N, Ouzaouit K, Abdennouri M, El Makhfouk M (2013) Dried prickly pear Cactus (Opuntia ficus-indica) cladodes as a low-cost and eco-friendly biosorbent for dyes removal from aqueous solutions. J Taiwan Inst Chem Eng 44(1):52–60. doi: 10.1016/j.jtice.2012.09.007 CrossRefGoogle Scholar
  12. 12.
    Cardenas A, Higuera-Ciapara I, Goycoolea FM (1997) Rheology and aggregation of cactus (Opuntia ficus indica) mucilage in solution. J Prof Assoc Cactus Dev 2:152–157Google Scholar
  13. 13.
    Medina-Torres L, Brito-De La Fuente E, Torrestiana-Sanchez B, Katthain R (2000) Rheological properties of the mucilage gum (Opuntia ficus indica). Food Hydrocoll 14(5):417–424. doi: 10.1016/S0268-005X(00)00015-1 CrossRefGoogle Scholar
  14. 14.
    Abdel-Hameedn ESS, Nagaty MA, Salman MS, Bazaid SA (2014) Phytochemicals, nutritionals and antioxidant properties of two prickly pear cactus cultivars (Opuntia ficus indica Mill.) growing in Taif, KSA. Food Chem 160:31–33. doi: 10.1016/j.foodchem.2014.03.060 CrossRefGoogle Scholar
  15. 15.
    Mannai F, Ammar M, Yanez JG, Elaloui E, Moussaoui Y (2016) Cellulose fiber from Tunisian Barbary Fig “Opuntia ficus-indica” for papermaking. Cellulose 23(3):2061–2072. doi: 10.1007/s10570-016-0899-9 CrossRefGoogle Scholar
  16. 16.
    Agozzino P, Avellone G, Ceraulo L, Ferrugia M, Filizzola F (2005) Volatile profile of sicilian prickly pear (Opuntia ficus-indica) by SPME-GC/MS analysis. Ital J Food Sci 17(3):341–348Google Scholar
  17. 17.
    Rodríguez-González S, Martínez-Flores HE, Chávez-Moreno CK, Macías-Rodríguez L, Zavala-Mendoza E, Garnica-Romo MG, Chacón-García L (2014) Extraction and characterization of mucilage from wild species of Opuntia. J Food Process Eng 37(3):285–292. doi: 10.1111/jfpe.12084 CrossRefGoogle Scholar
  18. 18.
    Bouatay F, Mhenni F (2014) Use of the cactus cladodes mucilage (Opuntia Ficus Indica) as an eco-friendly flocculants: process development and optimization using stastical analysis. Int J Environ Res 8(4):1295–1308Google Scholar
  19. 19.
    Amin ES, Awad OM, El-Sayed MM (1970) The mucilage of Opuntia ficus indica mill. Carbohydr Res 15(1):159–161. doi: 10.1016/S0008-6215(00)80304-3 CrossRefGoogle Scholar
  20. 20.
    Nobel P, Cavelier J, Andrade JL (1992) Mucilage in cacti: its apoplastic capacitance, associated solutes, and influence on tissue 5. J Exp Bot 43(250):641–648. doi: 10.1093/jxb/43.5.641 CrossRefGoogle Scholar
  21. 21.
    Fox DI (2011) Cactus mucilage-assisted heavy metal separation: design and implementation. Dissertation, University of South FloridaGoogle Scholar
  22. 22.
    Trachtenberg S, Mayer AM (1981) Composition and properties of Opuntia ficus-indica mucilage. Phytochem 20(12):2665–2668. doi: 10.1016/0031-9422(81)85263-6 CrossRefGoogle Scholar
  23. 23.
    Fox DI, Pichler T, Yeh DH, Alcantar NA (2012) Removing heavy metals in water: the interaction of Cactus mucilage and arsenate (As (V)). Environ Sci Technol 46(8):4553–4559. doi: 10.1021/es2021999 CrossRefGoogle Scholar
  24. 24.
    Sarı A, Tuzen M (2009) Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. J Hazard Mater 164(2):1004–1011. doi: 10.1016/j.jhazmat.2008.09.002 CrossRefGoogle Scholar
  25. 25.
    Díaz KDM, Reyes TF, Cabrera P, Sánchez MD, García MA, de Posada Piñán E (2013) Characterization of laser-treated Opuntia using FT-IR spectroscopy and thermal analysis. Appl Phys A Mater Sci Process 112(1):221–224. doi: 10.1007/s00339-012-7308-5 CrossRefGoogle Scholar
  26. 26.
    Ishurd O, Zgheel F, Elghazoun M, Elmabruk M, Kermagi A, Kennedy JF, Knill CJ (2010) A novel (1-4)-a-D-glucan isolated from the fruits of Opuntia ficus-indica (L.) Miller. Carbohydr Polym 82(3):848–853. doi: 10.1016/j.carbpol.2010.06.006 CrossRefGoogle Scholar
  27. 27.
    Betatache H, Aouabed A, Drouiche N, Lounici H (2014) Conditioning of sewage sludge by prickly pear Cactus (Opuntia ficus-indica) juice. Ecol Eng 70:465–469. doi: 10.1016/j.ecoleng.2014.06.031 CrossRefGoogle Scholar
  28. 28.
    Jadhav MV, Mahajan YS (2014) Assessment of feasibility of natural coagulants in turbidity removal and modelling of coagulation process. Desalin Water Treat 52(31–33):5812–5821. doi: 10.1080/19443994.2013.816875 CrossRefGoogle Scholar
  29. 29.
    Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377. doi: 10.1016/j.arabjc.2010.07.019 CrossRefGoogle Scholar
  30. 30.
    Ghasemi M, Naushad M, Ghasemi N, Khosravi-fard Y (2014) A novel agricultural waste based adsorbent for the removal of Pb(II) from aqueous solution: kinetics, equilibrium and thermodynamic studies. J Ind Eng Chem 20(2):454–461. doi: 10.1016/j.jiec.2013.05.002 CrossRefGoogle Scholar
  31. 31.
    Fernández-López JA, Angosto JM, Avilés MD (2014) Biosorption of hexavalent chromium from aqueous medium with opuntia biomass. Sci World J 670249. doi: 10.1155/2014/67024
  32. 32.
    Anastopoulos I, Massas I, Constantinos E (2015) Use of residues and by-products of the olive-oil production chain for the removal of pollutants from environmental media: a review of batch biosorption approaches. J Environ Sci Heal Part A 50(7):677–718CrossRefGoogle Scholar
  33. 33.
    Anastopoulos I, Kyzas GZ (2014) Agricultural peels for dye adsorption: a review of recent literature. J Mol Liq 200:381–389. doi: 10.1016/j.molliq.2014.11.006 CrossRefGoogle Scholar
  34. 34.
    Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97(1–3):219–243. doi: 10.1016/S0304-3894(02)00263-7 CrossRefGoogle Scholar
  35. 35.
    Saiano F, Ciofalo M, Cacciola SO, Ramirez S (2005) Metal ion adsorption by Phomopsis sp. biomaterial in laboratory experiments and real wastewater treatments. Water Res 39(11):2273–2280. doi: 10.1016/j.watres.2005.04.022 CrossRefGoogle Scholar
  36. 36.
    Selatnia A, Boukazoula A, Kechid N, Bakhti MZ, Chergui A, Kerchich Y (2004) Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem Eng J 19(2):127–135CrossRefGoogle Scholar
  37. 37.
    Doke KM, Khan EM (2013) Adsorption thermodynamics to clean up wastewater; critical review. Rev Environ Sci Biotechnol 12:25–44. doi: 10.1016/j.bej.2003.12.007 CrossRefGoogle Scholar
  38. 38.
    Nharingo T, Shoniwa V, Hunga O, Shumba M (2013) Exploring the biosorption of Methylene Blue dye onto acid treated sugarcane bagasse. Int J Curr Res 5:2169–2175Google Scholar
  39. 39.
    Mahamadi C, Nharingo T (2007) Modelling the kinetics and equilibrium properties of cadmium biosorption by river green alga and water hyacinth weed. Toxicol Environ Chem 89(2):297–305. doi: 10.1080/02772240601010063 CrossRefGoogle Scholar
  40. 40.
    Kyzas GZ, Matis KA (2014) New biosorbent materials: selectivity and bioengineering insights. Processes 2(2):419–440. doi: 10.3390/pr2020419 CrossRefGoogle Scholar
  41. 41.
    Al-Garni SM (2005) Biosorption of lead by gram-ve capsulated and noncapsulated bacteria. Water SA 31(3):345–350. doi: 10.4314/wsa.v31i3.5224 Google Scholar
  42. 42.
    Bharathi KS, Ramesh ST (2013) Removal of dyes using agricultural waste as low-cost adsorbents: a review. Appl Water Sci 3(4):773–790. doi: 10.1007/s13201-013-0117-y CrossRefGoogle Scholar
  43. 43.
    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRefGoogle Scholar
  44. 44.
    Voudrias E, Fytianos F, Bozani E (2002) Sorption–desorption isotherms of dyes from aqueous solutions and wastewaters with different sorbent materials. Global Nest Int J 4(1):75–83Google Scholar
  45. 45.
    Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57:385–470Google Scholar
  46. 46.
    Volesky B, Holant ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11(3):235–250. doi: 10.1021/bp00033a001
  47. 47.
    Aksu Z, Sag Y, Kutsal T (1992) The biosorpnon of copperod by C. vulgaris and Z. ramigera. Environ Technol 13(6):579–586. doi: 10.1080/09593339209385186 CrossRefGoogle Scholar
  48. 48.
    Tsezos M, Remoundaki E, Hatzikioseyian A (2006) Biosorption-principles and applications for metal immobilization from waste-water streams. In: Proceedings of EU-Asia workshop on clean production and nanotechnologies, Seoul, Korea, 25–26 Oct 2006, pp 23–33Google Scholar
  49. 49.
    Ramachandra TV, Ahalya N, Kanamadi RD (2003) Biosorption of heavy metals. Res J Chem Environ 7(4):71–79Google Scholar
  50. 50.
    Gupta VK, Jain CK, Ali I, Chandra S, Agarwal S (2002) Removal of lindane and malathion from wastewater using bagasse fly ash—a sugar industry waste. Water Res 36(10):2483–2490. doi: 10.1016/S0043-1354(01)00474-2 CrossRefGoogle Scholar
  51. 51.
    Horsfall MJ, Spiff AI (2005) Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by caladium bicolor (wild cocoyam) biomass. Electron J Biotechnol 8(2):162–169. doi: 10.4067/S0717-34582005000200005 CrossRefGoogle Scholar
  52. 52.
    Sawalha MF, Peralta-Videa JR, Romero-Gonzalez J, Gardea-Torresdey JL (2006) Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: thermodynamic and isotherm studies. J Colloid Interface Sci 300(1):100–104. doi: 10.1016/j.jcis.2006.03.029 CrossRefGoogle Scholar
  53. 53.
    Diez MC (2010) Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutr 10(3):244–267. doi: 10.4067/S0718-95162010000100004 CrossRefGoogle Scholar
  54. 54.
    Gebrekidan A, Nicolai H, Vincken L, Teferi M, Asmelash T, Dejenie T, Zerabruk S, Gebrehiwet K, Bauer H, Deckers J, Luis P, De Meester L, van der Bruggen B (2013) Pesticides removal by filtration over cactus pear leaves: a cheap and natural method for small-scale water purification in semi-arid regions. CLEAN Soil Air Water 41(3):235–243. doi: 10.1002/clen.201200042 CrossRefGoogle Scholar
  55. 55.
    Abballe A, Ballard TJ, Dellatte E, di Domenico A, Ferri F, Fulgenzi ARa, Grisanti G, Iacovella N, Ingelido AM, Malisch R, Miniero R (2008) Persistent environmental contaminants in human milk: concentrations and time trends in Italy. Chemosphere 73(1):S220–S227. doi: 10.1016/j.chemosphere.2007.12.036
  56. 56.
    Weichenthal S, Moase C, Chan P (2010) Review of pesticide exposure and cancer incidence in the Agricultural Health Study cohort. Environ Health Perspect 118(8):1117–1125CrossRefGoogle Scholar
  57. 57.
    Farooq U, Khan MA, Athar M, Kozinski JA (2011) Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium(II) ions from aqueous solution. Chem Eng J 171(2):400–410. doi: 10.1016/j.cej.2011.03.094 CrossRefGoogle Scholar
  58. 58.
    Akhtar M, Iqbal S, Kausar A, Bhanger MI, Shaheen MA (2010) An economically viable method for the removal of selected divalent metal ions from aqueous solutions using activated rice husk. Colloids Surf B 75(1):149–155. doi: 10.1016/j.colsurfb.2009.08.025 CrossRefGoogle Scholar
  59. 59.
    Barka N, Abdennouri M, Makhfouk MEL (2011) Removal of methylene blue and eriochrome black T from aqueous solutions by biosorption on Scolymus hispanicus L.: kinetics, equilibrium and thermodynamics. J Taiwan Inst Chem Eng 42:320–326. doi: 10.1016/j.jtice.2010.07.004 CrossRefGoogle Scholar
  60. 60.
    Wang XJ, Xia SQ, Chen L, Zhao JF, Chovelon JM, Nicole JR (2006) Biosorption of cadmium(II) and lead(II) ions from aqueous solutions onto dried activated sludge. J Environ Sci 18(5):840–844. doi: 10.1016/S1001-0742(06)60002-8 CrossRefGoogle Scholar
  61. 61.
    Swathi M, Sathya SA, Aravind S, Sudhakar PK, Gobinath R, Devi DS (2014) Experimental studies on tannery wastewater using Cactus powder as an adsorbent. Int J Appl Sci Eng Res 3(2):436–446. doi: 10.6088/ijaser.030200014 Google Scholar
  62. 62.
    Prodromou M, Pashalidis I (2013) Copper(II) removal from aqueous solutions by adsorption on non-treated and chemically modified Cactus fibres. Water Sci Technol 68(11):2497–2504. doi: 10.2166/wst.2013.535 CrossRefGoogle Scholar
  63. 63.
    Barrera H, Ureña-Núñez F, Bilyeu B, Barrera-Díaz C (2006) Removal of chromium and toxic ions present in mine drainage by Ectodermis of Opuntia. J Hazard Mater 136:846–853. doi: 10.1016/j.jhazmat.2006.01.021 CrossRefGoogle Scholar
  64. 64.
    Bhatnagar A, Minocha AK (2006) Conventional and non conventional adsorbents for removal of pollutants from water—a review. Indian J Chem Technol 13(3):203–217. Available Accessed 03 Apr 2017
  65. 65.
    Vianna LNL, Andrade MC, Vicoli JR (2000) Screening of waste biomass from Saccharomyces cerevisiae, Aspergillus oryzae and Bacillus lentus fermentations for removal of Cu, Zn and Cd by biosorption. World J Microb Biotechnol 16(5):437–440. doi: 10.1023/A:1008953922144 CrossRefGoogle Scholar
  66. 66.
    Selatnia A, Madani A, Bakhti MZ et al (2004) Biosorption of Ni2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Miner Eng 17(7):903–911. doi: 10.1016/j.mineng.2004.04.002 CrossRefGoogle Scholar
  67. 67.
    Roy D, Greenlaw PN, Shane BS (1993) Adsorption of heavy metals by green algae and ground rice hulls. J Environ Sci Health A 28(21):37–50. doi: 10.1080/10934529309375861 Google Scholar
  68. 68.
    Srivastava SK, Singh AK, Sharma A (1994) Studies on the uptake of lead and zinc by lignin obtained from black liquor—a paper industry waste material. Environ Technol 15(4):353–361. doi: 10.1080/09593339409385438 CrossRefGoogle Scholar
  69. 69.
    Srivastava SK, Tyagi R, Pant N (1989) Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Res 23(9):1161–1165. doi: 10.1016/0043-1354(89)90160-7 CrossRefGoogle Scholar
  70. 70.
    Ouki SK, Cheeseman CR, Perry R (1993) Effects of conditioning and treatment of chabazite and clinoptilolite prior to lead and cadmium removal. Environ Sci Technol 27(6):1108–1116CrossRefGoogle Scholar
  71. 71.
    Zamzow MJ, Eichbaum BR, Sandgren KR, Shanks DE (1990) Removal of heavy metals and other cations from waste water using Zeolites. Sep Sci Technol 25(13–15):1555–1569. doi: 10.1080/01496399008050409 CrossRefGoogle Scholar
  72. 72.
    De Sena RF, Moreira RF, José HJ (2008) Comparison of coagulants and coagulation aids for treatment of meat processing wastewater by column flotation. Bioresour Technol 99(17):8221–8225. doi: 10.1016/j.biortech.2008.03.014 CrossRefGoogle Scholar
  73. 73.
    Amuda OS, Amoo IA, Ajayi OO (2006) Performance optimization of coagulant/ flocculant in the treatment of wastewater from a beverage industry. J Hazard Mater 129(1–3):69–72. doi: 10.1016/j.jhazmat.2005.07.078 CrossRefGoogle Scholar
  74. 74.
    Theodoro JDP, Lenz GF, Zara RF, Bergamasco R (2013) Coagulants and natural polymers: perspectives for the treatment of water. Plast Polym Technol 2(3):55–62Google Scholar
  75. 75.
    Buttice AL (2012) Aggregation of sediment and bacteria with mucilage from the Opuntia ficus-indica cactus. Dissertation, University of South Florida, TampaGoogle Scholar
  76. 76.
    Renault F, Sancey B, Badot P, Crini G (2009) Chitosan for coagulation/flocculation processes-an ecofriendly approach. Eur Polym J 45(5):1337–1348. doi: 10.1016/j.eurpolymj.2008.12.027 CrossRefGoogle Scholar
  77. 77.
    De Souza MTF, Ambrosio E, De Almeida CA, De Souza Freitas TKF, Santos LB, de Cinque Almeida V, Garcia JC (2014) The use of a natural coagulants (Opuntia ficus-indica) in the removal for organic materials of textile effluents. Environ Moint Asses 186(8):5261–5271. doi: 10.1007/s10661-014-3775-9 CrossRefGoogle Scholar
  78. 78.
    Bustillos LGT, Carpinteyro-urban S, Orozco C (2013) Production and characterization of Opuntia ficus-indica mucilage and its use as coagulant-flocculant aid for industrial wastewaters. Int J Biotechnol Res 1:38–45Google Scholar
  79. 79.
    Cardenas A, Goycoolea FM, Rinaudo M (2008) On the gelling behaviour of “nopal” (Opuntia ficus-indica) low methoxyl pectin. Carbohydr Polym 73(2):212–222. doi: 10.1016/j.carbpol.2007.11.017 CrossRefGoogle Scholar
  80. 80.
    Medina-Torres L, Vernon-Carter EJ, Gallegos-Infante JA, Rocha-Guzman NE, Herrera-Valencia EE, Calderas F, Jiménez-Alvarado R (2011) Study of the antioxidant properties of extracts obtained from nopal Cactus (Opuntia ficus indica) cladodes after convective drying. J Sci Food Agric 91(6):1001–1005. doi: 10.1002/jsfa.4271 CrossRefGoogle Scholar
  81. 81.
    Torres LG, Carpinteyro-Urban SL, Vaca M (2012) Use of Prosopis laevigata seed gum and Opuntia ficus-indica mucilage for the treatment of municipal wastewaters by coagulation-flocculation. Nat Resour 3(2):35–41. doi: 10.4236/nr.2012.32006 Google Scholar
  82. 82.
    Miller SM, Fugate EJ, Craver VO, Smith JA, Zimmerman JB (2008) Toward understanding the efficacy and mechanism of Opuntia spp. as a natural coagulant for potential application in water treatment. Environ Sci Technol 42(12):4274–4279. doi: 10.1021/es7025054 CrossRefGoogle Scholar
  83. 83.
    Pichler T, Young K, Alcantar N (2012) Eliminating turbidity in drinking water using the mucilage of a common Cactus. Water Sci Technol Water Supply 12(2):179–186. doi: 10.2166/ws.2012.126 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.ARPARegional Environmental Protection AgencyRagusaItaly
  2. 2.Benaquam S.R.L.DoganaRepublic of San Marino

Personalised recommendations