Advertisement

Real-Time Lattice Simulations of Quantum Anomalies, Topologies and Particle Production in Strongly Correlated Gauge Theories

  • Niklas MuellerEmail author
  • Oscar Garcia-Montero
  • Naoto Tanji
  • Juergen Berges
Conference paper

Abstract

We present results of numerical lattice simulations of anomalous and topological effects in Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD) in far from equilibrium situations. Based on the classical-statistical approximation to the Schwinger-Keldysh path integral formalism, we perform extensive numerical studies including dynamical Wilson and overlap fermions. Using advanced algorithmic techniques, we study the real-time dynamics of the axial anomaly relevant for strong field laser physics beyond the Schwinger limit and we observe novel dynamical refringence effects caused by the anomaly. Furthermore, motivated by recent interest in the physics of the Chiral Magnetic Effect in ultra-relativistic heavy ion collisions, we study the real time dynamics of fermions during and after a sphaleron transition and anomalous transport in the presence of strong magnetic fields.

References

  1. 1.
    D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008). arXiv:0711.0950 [hep-ph]CrossRefGoogle Scholar
  2. 2.
    D.E. Kharzeev, D.T. Son, Phys. Rev. Lett. 106, 062301 (2011). arXiv:1010.0038 [hep-ph]CrossRefGoogle Scholar
  3. 3.
    B.I. Abelev et al., [STAR Collaboration], Phys. Rev. Lett. 103, 251601 (2009). arXiv:0909.1739 [nucl-ex]Google Scholar
  4. 4.
    N. Mueller, S. Schlichting, S. Sharma, Phys. Rev. Lett. 117(14), 142301 (2016). arXiv:1606.00342 [hep-ph]Google Scholar
  5. 5.
    V. Skokov, P. Sorensen, V. Koch, S. Schlichting, J. Thomas, S. Voloshin, G. Wang, H.U. Yee, arXiv:1608.00982 [nucl-th]Google Scholar
  6. 6.
    D. Kharzeev, J. Liao, S. Voloshin, G. Wang, Prog. Part. Nucl. Phys. 88, 1 (2016). arXiv:1511.04050[hep-ph]CrossRefGoogle Scholar
  7. 7.
    J. Berges, K. Boguslavski, S. Schlichting, R. Venugopalan, Phys. Rev. D 89(11), 114007 (2014). arXiv:1311.3005 [hep-ph]Google Scholar
  8. 8.
    F. Gelis, N. Tanji, J. High Energy Phys. 1602, 126 (2016). arXiv:1506.03327 [hep-ph]CrossRefGoogle Scholar
  9. 9.
    V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009). arXiv:0907.1396 [nucl-th]CrossRefGoogle Scholar
  10. 10.
    K. Tuchin, Phys. Rev. C 88(2), 024911 (2013). arXiv:1305.5806 [hep-ph]Google Scholar
  11. 11.
    A.D. Sakharov, Pis’ma Zh. Eksp. Teor. Fiz. 5, 32 (1967)Google Scholar
  12. 12.
    A.G. Cohen, D.B. Kaplan, A.E. Nelson, Ann. Rev. Nucl. Part. Sci. 43, 27 (1993)CrossRefGoogle Scholar
  13. 13.
    V.A. Rubakov, M.E. Shaposhnikov, Usp. Fiz. Nauk 166, 493 (1996)CrossRefGoogle Scholar
  14. 14.
    N. Mueller, N. Tanji, O. Garcia, J. Berges, Real-time lattice simulations of quantum anomalies, topologies and particle production in strongly correlated gauge theories. ForHLR Phase I proposal, Nov 2015Google Scholar
  15. 15.
    N. Tanji, N. Mueller, J. Berges, Phys. Rev. D 93(7), 074507 (2016). arXiv:1603.03331 [hep-ph]Google Scholar
  16. 16.
    H.B. Nielsen, M. Ninomiya, Nucl. Phys. B 185, 20 (1981)CrossRefGoogle Scholar
  17. 17.
    M. Mace, N. Mueller, S. Schlichting, S. Sharma, Phys. Rev. D. 95, 036023 (2017). arXiv:1612.02477 [hep-ph]CrossRefGoogle Scholar
  18. 18.
    N. Mueller, F. Hebenstreit, J. Berges, Phys. Rev. Lett. 117(6), 061601 (2016). arXiv:1605.01413 [hep-ph]Google Scholar
  19. 19.
    F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, Ann. Rev. Nucl. Part. Sci. 60, 463 (2010). arXiv:1002.0333 [hep-ph]CrossRefGoogle Scholar
  20. 20.
    J. Berges, K. Boguslavski, S. Schlichting, R. Venugopalan, Phys. Rev. D 92(9), 096006 (2015). arXiv:1508.03073 [hep-ph]Google Scholar
  21. 21.
    A. Tranberg, J. Smit, M. Hindmarsh, Nucl. Phys. A 785, 102 (2007). hep-ph/0608167CrossRefGoogle Scholar
  22. 22.
    S. Borsanyi, M. Hindmarsh, Phys. Rev. D 79, 065010 (2009). arXiv:0809.4711 [hep-ph]CrossRefGoogle Scholar
  23. 23.
    N. Yamamoto, Phys. Rev. D 93(6), 065017 (2016). arXiv:1511.00933 [astro-ph.HE]Google Scholar
  24. 24.
    D. Grabowska, D.B. Kaplan, S. Reddy, Phys. Rev. D 91(8), 085035 (2015). arXiv:1409.3602 [hep-ph]Google Scholar
  25. 25.
    T. Eguchi, N. Kawamoto, Nucl. Phys. B 237, 609 (1984)CrossRefGoogle Scholar
  26. 26.
    B. Sheikholeslami, R. Wohlert, Nucl. Phys. B 259, 572 (1985)CrossRefGoogle Scholar
  27. 27.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, J. High Energy Phys. 0112, 009 (2001). hep-ph/0111107CrossRefGoogle Scholar
  28. 28.
    A. Adare et al., [PHENIX Collaboration], Phys. Rev. Lett. 104, 252301 (2010). arXiv:1002.1077 [nucl-ex]Google Scholar
  29. 29.
    C. Shen, Nucl. Phys. A 956, 184 (2016). arXiv:1601.02563[nucl-th]CrossRefGoogle Scholar
  30. 30.
    C. Klein-Bosing, L. McLerran, Phys. Lett. B 734, 282 (2014). arXiv:1403.1174 [nucl-th]CrossRefGoogle Scholar
  31. 31.
    N. Tanji, Phys. Rev. D 92(12), 125012 (2015). arXiv:1506.08442 [hep-ph]Google Scholar
  32. 32.
    L. McLerran, B. Schenke, Nucl. Phys. A 929, 71 (2014). arXiv:1403.7462 [hep-ph]CrossRefGoogle Scholar
  33. 33.
    K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008). arXiv:0808.3382 [hep-ph]CrossRefGoogle Scholar
  34. 34.
    S. Benic, K. Fukushima, O. Garcia-Montero, R. Venugopalan, J. High Energy Phys. 1701, 115 (2017). https://doi.org/10.1007/JHEP01(2017)115, arXiv:1609.09424 [hep-ph]CrossRefGoogle Scholar
  35. 35.
    J. Berges, K. Reygers, N. Tanji, R. Venugopalan, arXiv:1704.04032 [nucl-th]Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Niklas Mueller
    • 1
    Email author
  • Oscar Garcia-Montero
    • 1
  • Naoto Tanji
    • 1
  • Juergen Berges
    • 1
  1. 1.Institute for Theoretical PhysicsHeidelberg UniversityHeidelbergGermany

Personalised recommendations