Illuminant Color Inconsistency as a Powerful Clue for Detecting Digital Image Forgery: A Survey

  • Divya S. VidyadharanEmail author
  • Sabu M. Thampi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 683)


Digital images capture our attention and are retained in our memory for longer than other sensory perceptions. Despite numerous instances of image forgery, still, people tend to believe digital images. At the same time, digital investigations reveal an increasing trend of image forgery with illicit purposes. Image editing operations that lead to forgery always leave traces. Investigators rely upon these traces for detecting an image forgery. Researchers are trying to detect image forgery by devising techniques that exploit the traces present in forged images. Recently, illuminant color, the color of the scene illumination present in the image that hints the illumination prevailed at the time of image capture is studied as potential evidence for image forgery. In this survey, we explore the evolution of illuminant color based image forgery detection. This survey provides a brief description of different illuminant color estimation approaches employed in image forgery detection followed by a detailed review of existing illuminant color inconsistency based forgery detection techniques. The major contribution of this survey is the elaborate discussion of future research directions to provide insight to researchers.


Illuminant color estimation Illuminant color inconsistency Image splicing detection Image forgery detection Forgery localization Image forensics 



The authors would like to thank the Higher Education Department, Government of Kerala for funding this research and the Department of Computer Science and Engineering, College of Engineering, Trivandrum for providing the facilities.


  1. 1.
    Beigpour, S., Riess, C., van de Weijer, J., Angelopoulou, E.: Multi-illuminant estimation with conditional random fields. IEEE Trans. Image Process. 23(1), 83–96 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bianco, S., Schettini, R.: Adaptive color constancy using faces. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1505–18 (2014)CrossRefGoogle Scholar
  3. 3.
    Birajdar, G.K., Mankar, V.H.: Digital image forgery detection using passive techniques: a survey. Digital Invest. 10(3), 226–245 (2013)CrossRefGoogle Scholar
  4. 4.
    Bleier, M., Riess, C., Beigpour, S., Eibenberger, E., Angelopoulou, E., Tröger, T., Kaup, A.: Color constancy and non-uniform illumination: can existing algorithms work? In: Proceedings of IEEE Color and Photometry in Computer Vision Workshop, pp. 774–81 (2011)Google Scholar
  5. 5.
    Buchsbaum, G.: A spatial processor model for object colour perception. J. Franklin Inst. 310(1), 1–26 (1980)CrossRefGoogle Scholar
  6. 6.
    Cao, G., Zhao, Y., Ni, R.: Image composition detection using object-based color consistency. In: 2008 9th International Conference on Signal Processing., pp. 1186–1189, October 2008Google Scholar
  7. 7.
    Çarkacıoǧlu, A., Yarman-Vural, F.: Sasi: a generic texture descriptor for image retrieval. Pattern Recognit. 36(11), 2615–33 (2003)CrossRefGoogle Scholar
  8. 8.
    Carvalho, T., Faria, F.A., Pedrini, H., Torres, R.D.S., Rocha, A.: Illuminantbased transformed spaces for image forensics. IEEE Trans. Inf. Forensics Secur. 11(4), 720–33 (2016)CrossRefGoogle Scholar
  9. 9.
    Carvalho, T., Pedrini, H., Rocha, A.: Illumination inconsistency sleuthing for exposing fauxtography and uncovering composition telltales in digital images. In: Workshop of Theses and Dissertations-XXVII SIBGRAPI Conference on Graphics, Patterns and Images, Rio de Janeiro, RJ, Brazil (2014)Google Scholar
  10. 10.
    Ciurea, F., Funt, B.: A large image database for color constancy research. In: Color and Imaging Conference, Society for Imaging Science and Technology, vol. 2003, pp. 160–164 (2003)Google Scholar
  11. 11.
    Cook, R.L., Torrance, K.E.: A reflectance model for computer graphics. ACM Trans. Graph. (TOG) 1(1), 7–24 (1982)CrossRefGoogle Scholar
  12. 12.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893, June 2005Google Scholar
  13. 13.
    De Carvalho, T.J., Riess, C., Angelopoulou, E., Pedrini, H., de Rezende Rocha, A.: Exposing digital image forgeries by illumination color classification. IEEE Transa. Inf. Forensics Secur. 8(7), 1182–94 (2013)CrossRefGoogle Scholar
  14. 14.
    Dong, J., Wang, W., Tan, T.: Casia image tampering detection evaluation database. In: 2013 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP), pp. 422–426. IEEE (2013)Google Scholar
  15. 15.
    Eibenberger, E., Angelopoulou, E.: Beyond the neutral interface reflection assumption in illuminant color estimation. In: Proceedings of IEEE International Conference Image Processing (ICIP), pp. 4689–4692 (2010)Google Scholar
  16. 16.
    Fan, Y., Carré, P., Fernandez-Maloigne, C.: Image splicing detection with local illumination estimation. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 2940–2944, September 2015Google Scholar
  17. 17.
    Farid, H.: Image forgery detection. IEEE Signal Process. Mag. 26(2), 16–25 (2009)CrossRefGoogle Scholar
  18. 18.
    Finlayson, G.D., Schaefer, G.: Solving for colour constancy using a constrained dichromatic reflection model. Int. J. Comput. Vis. 42(3), 127–144 (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Francis, K., Gholap, S., Bora, P.K.: Illuminant colour based image forensics using mismatch in human skin highlights. In: 2014 Twentieth National Conference on Communications (NCC), pp. 1–6. IEEE (2014)Google Scholar
  20. 20.
    Gholap, S., Bora, P.K.: Illuminant colour based image forensics. In: TENCON 2008–2008 IEEE Region 10 Conference, pp. 1–5, November 2008Google Scholar
  21. 21.
    Gijsenij, A., Gevers, T., van de Weijer, J.: Computational color constancy: survey and experiments. IEEE Trans. Image Process. 20(9), 2475–89 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gijsenij, A., Gevers, T.: Color constancy using natural image statistics and scene semantics. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 687–98 (2011)CrossRefGoogle Scholar
  23. 23.
    Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 762–768, June 1997Google Scholar
  24. 24.
    Mazin, B., Delon, J., Gousseau, Y.: Estimation of illuminants from projections on the planckian locus. IEEE Trans. Image Process. 24(6), 1944–55 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mazumdar, A., Bora, P.K.: Exposing splicing forgeries in digital images through dichromatic plane histogram discrepancies. In: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, p. 62. ACM (2016)Google Scholar
  26. 26.
    Morrison, K.: How many photos are uploaded to snapchat every second? (2015).
  27. 27.
    Pass, G., Zabih, R., Miller, J.: Comparing images using color coherence vectors. In: Proceedings of the Fourth ACM International Conference on Multimedia, pp. 65–73. ACM (1997)Google Scholar
  28. 28.
    Qureshi, M.A., Deriche, M.: A bibliography of pixel-based blind image forgery detection techniques. Signal Process. Image Commun. 39, 46–74 (2015)CrossRefGoogle Scholar
  29. 29.
    Redi, J.A., Taktak, W., Dugelay, J.L.: Digital image forensics: a booklet for beginners. Multimedia Tools Appl. 51(1), 133–162 (2011)CrossRefGoogle Scholar
  30. 30.
    Riess, C.: Physics-based and Statistical Features for Image Forensics. Ph.D. thesis, University of Erlangen-Nuremberg (2012)Google Scholar
  31. 31.
    Riess, C., Angelopoulou, E.: Scene illumination as an indicator of image manipulation. Inf. Hiding 6387, 66–80 (2010)CrossRefGoogle Scholar
  32. 32.
    Riess, C., Unberath, M., Naderi, F., Pfaller, S., Stamminger, M., Angelopoulou, E.: Handling multiple materials for exposure of digital forgeries using 2-D lighting environments. Multimedia Tools Appl., 1–18 (2016)Google Scholar
  33. 33.
    Rocha, A., Scheirer, W., Boult, T., Goldenstein, S.: Vision of the unseen: current trends and challenges in digital image and video forensics. ACM Comput. Surv. (CSUR) 43(4), 26 (2011)CrossRefGoogle Scholar
  34. 34.
    Shafer, S.A.: Using color to separate reflection components. Color Res. Appl. 10(4), 210–18 (1985)CrossRefGoogle Scholar
  35. 35.
    Stehling, R.O., Nascimento, M.A., Falcão, A.X.: A compact and efficient image retrieval approach based on border/interior pixel classification. In: Proceedings of the eleventh international conference on Information and knowledge management, pp. 102–09. ACM (2002)Google Scholar
  36. 36.
    Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991)CrossRefGoogle Scholar
  37. 37.
    Taimori, A., Razzazi, F., Behrad, A., Ahmadi, A., Babaie-Zadeh, M.: A novel forensic image analysis tool for discovering double jpeg compression clues. Multimedia Tools Appl., 1–35 (2016)Google Scholar
  38. 38.
    Tan, R.T., Nishino, K., Ikeuchi, K.: Color constancy through inverse-intensity chromaticity space. J. Opt. Soci. Am. A 21(3), 321–34 (2004)CrossRefGoogle Scholar
  39. 39.
    Tralic, D., Zupancic, I., Grgic, S., Grgic, M.: Comofod; new database for copy-move forgery detection. In: ELMAR, 2013 55th International Symposium, pp. 49–54, September 2013Google Scholar
  40. 40.
    Van De Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Trans. Image Process. 16(9), 2207–14 (2007)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Vidyadharan, D.S., Thampi, S.M.: Detecting spliced face in a group photo using PCA. In: 2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR), pp. 175–180, November 2015Google Scholar
  42. 42.
    Vidyadharan, D., Thampi, S.: Brightness distribution based image tampering detection. In: 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), pp. 1–5, February 2015Google Scholar
  43. 43.
    Wu, X., Fang, Z.: Image splicing detection using illuminant color inconsistency. In: 2011 Third International Conference on Multimedia Information Networking and Security (MINES), pp. 600–603. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.College of Engineering-TrivandrumTrivandrumIndia
  2. 2.LBS Centre for Science and TechnologyTrivandrumIndia
  3. 3.University of KeralaTrivandrumIndia
  4. 4.Indian Institute of Information Technology and Management-KeralaTrivandrumIndia

Personalised recommendations