Advertisement

Robust Relocalization Based on Active Loop Closure for Real-Time Monocular SLAM

  • Xieyuanli Chen
  • Huimin LuEmail author
  • Junhao Xiao
  • Hui Zhang
  • Pan Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10528)

Abstract

Remarkable performance has been achieved using the state-of-the-art monocular Simultaneous Localization and Mapping (SLAM) algorithms. However, tracking failure is still a challenging problem during the monocular SLAM process, and it seems to be even inevitable when carrying out long-term SLAM in large-scale environments. In this paper, we propose an active loop closure based relocalization system, which enables the monocular SLAM to detect and recover from tracking failures automatically even in previously unvisited areas where no keyframe exists. We test our system by extensive experiments including using the most popular KITTI dataset, and our own dataset acquired by a hand-held camera in outdoor large-scale and indoor small-scale real-world environments where man-made shakes and interruptions were added. The experimental results show that the least recovery time (within 5 ms) and the longest success distance (up to 46 m) were achieved comparing to other relocalization systems. Furthermore, our system is more robust than others, as it can be used in different kinds of situations, i.e., tracking failures caused by the blur, sudden motion and occlusion. Besides robots or autonomous vehicles, our system can also be employed in other applications, like mobile phones, drones, etc.

Keywords

Relocalization Monocular SLAM Active loop closure Robots 

Notes

Acknowledgment

This work was supported by National Science Foundation of China (No. 61403409, No. 61503401).

Supplementary material

Supplementary material 1 (mp4 264769 KB)

References

  1. 1.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). doi: 10.1007/11744023_32 CrossRefGoogle Scholar
  2. 2.
    Clemente, L.A., Davison, A.J., Reid, I.D., et al.: Mapping large loops with a single hand-held camera. In: Robotics: Science and Systems (RSS), pp. 297–304 (2007)Google Scholar
  3. 3.
    Cummins, M., Newman, P.: Appearance-only SLAM at large scale with FAB-MAP 2.0. Int. J. Robot. Res. (IJRR) 30, 1100–1123 (2011)CrossRefGoogle Scholar
  4. 4.
    Dellaert, F., Fox, D., Burgard, W., et al.: Monte carlo localization for mobile robots. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1322–1328. IEEE (1999)Google Scholar
  5. 5.
    Eade, E., Drummond, T.: Unified loop closing and recovery for real time monocular SLAM. In: British Machine Vision Conference (BMVC), p. 136 (2008)Google Scholar
  6. 6.
    Feder, H.J.S., Leonard, J.J., Smith, C.M.: Adaptive mobile robot navigation and mapping. Int. J. Robot. Res. (IJRR) 18, 650–668 (1999)CrossRefGoogle Scholar
  7. 7.
    Feng, Y., Wu, Y., Fan, L.: Online learning of binary feature indexing for real-time SLAM relocalization. In: Jawahar, C.V., Shan, S. (eds.) ACCV 2014. LNCS, vol. 9008, pp. 206–217. Springer, Cham (2015). doi: 10.1007/978-3-319-16628-5_15 Google Scholar
  8. 8.
    Geiger, A., Lenz, P., Stiller, C., et al.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32, 1231–1237 (2013)CrossRefGoogle Scholar
  9. 9.
    Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: International Conference on Very Large Data Bases, pp. 518–529. Morgan Kaufmann Publishers Inc. (1999)Google Scholar
  10. 10.
    Kümmerle, R., Grisetti, G., Strasdat, H., et al.: g2o: a general framework for graph optimization. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3607–3613 (2011)Google Scholar
  11. 11.
    Klein, G., Murray, D.: Improving the agility of keyframe-based SLAM. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 802–815. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88688-4_59 CrossRefGoogle Scholar
  12. 12.
    Lepetit, V., Moreno-Noguer, F., Fua, P.: Epnp: an accurate o (n) solution to the pnp problem. Int. J. Comput. Vis. (IJCV) 81, 155 (2009)CrossRefGoogle Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. (IJCV) 60, 91–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. (ITRO) 31, 1147–1163 (2015)CrossRefGoogle Scholar
  15. 15.
    Mur-Artal, R., Tardós, J.D.: Fast relocalisation and loop closing in keyframe-based SLAM. In: International Conference on Robotics and Automation (ICRA), pp. 846–853 (2014)Google Scholar
  16. 16.
    Pupilli, M., Calway, A.: Real-time camera tracking using a particle filter. In: British Machine Vision Conference (BMVC) (2005)Google Scholar
  17. 17.
    Rahimi, A., Morency, L.P., Darrell, T.: Reducing drift in parametric motion tracking. In: IEEE International Conference on Computer Vision (ICCV), vol. 311, pp. 315–322 (2001)Google Scholar
  18. 18.
    Reitmayr, G., Drummond, T.: Going out: robust model-based tracking for outdoor augmented reality. In: IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), pp. 109–118. IEEE Computer Society (2006)Google Scholar
  19. 19.
    Rublee, E., Rabaud, V., Konolige, K., et al.: ORB: an efficient alternative to SIFT or SURF. In: International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)Google Scholar
  20. 20.
    Se, S., Lowe, D.G., Little, J.J.: Vision-based global localization and mapping for mobile robots. IEEE Trans. Robot. (ITRO) 21, 364–375 (2005)CrossRefGoogle Scholar
  21. 21.
    Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: IEEE International Conference on Computer Vision (ICCV), pp. 1470–1477. IEEE (2003)Google Scholar
  22. 22.
    Stachniss, C., Hahnel, D., Burgard, W.: Exploration with active loop-closing for FastSLAM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1505–1510. IEEE (2004)Google Scholar
  23. 23.
    Strasdat, H., Davison, A.J., Montiel, J.M.M., et al.: Double window optimisation for constant time visual SLAM. In: International Conference on Computer Vision (ICCV), pp. 2352–2359 (2011)Google Scholar
  24. 24.
    Straub, J., Hilsenbeck, S., Schroth, G., et al.: Fast relocalization for visual odometry using binary features. In: IEEE International Conference on Image Processing (ICIP), pp. 2548–2552 (2013)Google Scholar
  25. 25.
    Williams, B., Cummins, M., Neira, J., et al.: A comparison of loop closing techniques in monocular SLAM. Robot. Auton. Syst. (RAS) 57, 1188–1197 (2009)CrossRefGoogle Scholar
  26. 26.
    Williams, B., Klein, G., Reid, I.: Automatic relocalization and loop closing for real-time monocular SLAM. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 33, 1699–1712 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Xieyuanli Chen
    • 1
  • Huimin Lu
    • 1
    Email author
  • Junhao Xiao
    • 1
  • Hui Zhang
    • 1
  • Pan Wang
    • 1
  1. 1.College of Mechatronics and AutomationNational University of Defense TechnologyChangshaChina

Personalised recommendations