An Empirical Study on How the Distribution of Ontologies Affects Reasoning on the Web

  • Hamid R. BazoobandiEmail author
  • Jacopo Urbani
  • Frank van Harmelen
  • Henri Bal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10587)


The Web of Data is an inherently distributed environment where ontologies are located in (physically) remote locations and are subject to constant changes. Reasoning is affected by these changes, but the extent and significance of this dependency is not well-studied yet. To address this problem, this paper presents an empirical study on how the distribution of ontological data on the Web affects the outcome of reasoning. We study (1) to what degree datasets depend on external ontologies and (2) to what extent the inclusion of additional ontological information via IRI de-referencing and the owl:imports directive to the input datasets leads to new derivations.

We based our study on many RDF datasets and on a large collection of RDFa, and JSON-LD data embedded into HTML pages. We used both Jena and Pellet in order to evaluate the results under different semantics. Our results indicate that remote ontologies are often crucial to obtain non-trivial derivations. Unfortunately, in many cases IRIs were broken and the owl:imports is rarely used. Furthermore, in some cases the inclusion of remote knowledge either did not yield any additional derivation or led to errors. Despite these cases, in general, we found that inclusion of additional ontologies via IRIs de-referencing and owl:imports directive is very effective for producing new derivations. This indicates that the two W3C standards for fetching remote ontologies have found their way into practice.


RDF RDFa JSON-LD OWL Reasoning Web of data 


  1. 1.
    Antoniou, G., van Harmelen, F.: Web ontology language: OWL. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 91–110. Springer, Heidelberg (2009). doi: 10.1007/978-3-540-92673-3_4 CrossRefGoogle Scholar
  2. 2.
    Baclawski, K., Kokar, M.M., Waldinger, R., Kogut, P.A.: Consistency checking of semantic web ontologies. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 454–459. Springer, Heidelberg (2002). doi: 10.1007/3-540-48005-6_40 CrossRefGoogle Scholar
  3. 3.
    Bal, H., Epema, D., de Laat, C., van Nieuwpoort, R., Romein, J., Seinstra, F., Snoek, C., Wijshoff, H.: A medium-scale distributed system for computer science research: infrastructure for the long term. Computer 49(5), 54–63 (2016)CrossRefGoogle Scholar
  4. 4.
    Bechhofer, S., Volz, R.: Patching syntax in OWL ontologies. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 668–682. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30475-3_46 CrossRefGoogle Scholar
  5. 5.
    Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: LOD Laundromat: a uniform way of publishing other people’s dirty data. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 213–228. Springer, Cham (2014). doi: 10.1007/978-3-319-11964-9_14 Google Scholar
  6. 6.
    Behkamal, B., Kahani, M., Bagheri, E., Jeremic, Z.: A metrics-driven approach for quality assessment of linked open data. J. Theor. Appl. Electron. Commer. Res. 9(2), 64–79 (2014)CrossRefGoogle Scholar
  7. 7.
    Berners-Lee, T.: Linked data-design issues (2006).
  8. 8.
    Brickley, D., Guha, R.V.: RDF Schema 1.1. W3C Recommendation (2014)Google Scholar
  9. 9.
    Cochran, W.G.: Sampling Techniques. Wiley, New York (2007)zbMATHGoogle Scholar
  10. 10.
    Delbru, R., Tummarello, G., Polleres, A.: Context-dependent OWL reasoning in Sindice - experiences and lessons learnt. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 46–60. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23580-1_5 CrossRefGoogle Scholar
  11. 11.
    Ding, L., Kolari, P., Ding, Z., Avancha, S.: Using ontologies in the semantic web: a survey. In: Ontologies, pp. 79–113 (2007)Google Scholar
  12. 12.
    Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and ranking knowledge on the semantic web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156–170. Springer, Heidelberg (2005). doi: 10.1007/11574620_14 CrossRefGoogle Scholar
  13. 13.
    Fallside, D.C., Walmsley, P.: XML schema part 0: primer. W3C Recommendation (2004)Google Scholar
  14. 14.
    Feeney, K., Mendel-Gleason, G., Brennan, R.: Linked data schemata: fixing unsound foundations. Semant. Web J. Spec. Issue Qual. Manag. Semant. Web Assets 1–23 (2015)Google Scholar
  15. 15.
    Glimm, B., Hogan, A., Krötzsch, M., Polleres, A.: OWL: yet to arrive on the web of data? In: WWW 2012 Workshop on Linked Data on the Web, vol. 937 (2012).
  16. 16.
    Gonçalves, R.S., Matentzoglu, N., Parsia, B., Sattler, U.: The empirical robustness of description logic classification. In: Proceedings of the 2013th International Conference on Posters & Demonstrations Track, vol. 1035, pp. 277–280 (2013).
  17. 17.
    Grau, B.C., Parsia, B., Sirin, E.: Combining OWL ontologies using \(\epsilon \)-connections. J. Web Semant. 4(1), 40–59 (2006)CrossRefGoogle Scholar
  18. 18.
    Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 web ontology language primer. W3C Recommendation (2009)Google Scholar
  19. 19.
    Jackson, S.L.: Research Methods and Statistics: A Critical Thinking Approach. Cengage Learning, Boston (2015)Google Scholar
  20. 20.
    Käfer, T., Abdelrahman, A., Umbrich, J., O’Byrne, P., Hogan, A.: Observing linked data dynamics. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 213–227. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38288-8_15 CrossRefGoogle Scholar
  21. 21.
    Klyne, G., Carroll, J.J., McBride, B.: RDF 1.1 concepts and abstract syntax. W3C Recommendation (2014)Google Scholar
  22. 22.
    Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen, R., Zaveri, A.: Test-driven evaluation of linked data quality. In: Proceedings of WWW (2014)Google Scholar
  23. 23.
    Matentzoglu, N., Bail, S., Parsia, B.: A snapshot of the OWL web. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 331–346. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41335-3_21
  24. 24.
    McBride, B.: Jena: a semantic web toolkit. IEEE Internet Comput. 6(6), 55–59 (2002)CrossRefGoogle Scholar
  25. 25.
    Mendes, P.N., Mühleisen, H., Bizer, C.: Sieve: linked data quality assessment and fusion. In: Proceedings of Joint EDBT/ICDT Workshops, pp. 116–123. EDBT-ICDT (2012)Google Scholar
  26. 26.
    Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation of datalog programs in centralised, main-memory RDF systems. In: Proceedings of AAAI, pp. 129–137 (2014)Google Scholar
  27. 27.
    Mühleisen, H., Bizer, C.: Web data commons-extracting structured data from two large web corpora. In: Proceedings of the Workshop Linked Data Web, vol. 937, pp. 133–145 (2012)Google Scholar
  28. 28.
    Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proceedings of WWW, pp. 633–640 (2005)Google Scholar
  29. 29.
    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. Web Semant. Sci. Serv. Agents World Wide Web 5, 51–53 (2007)Google Scholar
  30. 30.
    Urbani, J., Jacobs, C., Krötzsch, M.: Column-oriented datalog materialization for large knowledge graphs. In: Proceedings of AAAI, pp. 258–264 (2016)Google Scholar
  31. 31.
    Urbani, J., Kotoulas, S., Maassen, J., Van Harmelen, F., Bal, H.: WebPIE: a web-scale parallel inference engine using MapReduce. J. Web Semant. 10, 59–75 (2012)CrossRefGoogle Scholar
  32. 32.
    Wang, T.D., Parsia, B., Hendler, J.: A survey of the web ontology landscape. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 682–694. Springer, Heidelberg (2006). doi: 10.1007/11926078_49 CrossRefGoogle Scholar
  33. 33.
    Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hamid R. Bazoobandi
    • 1
    Email author
  • Jacopo Urbani
    • 1
  • Frank van Harmelen
    • 1
  • Henri Bal
    • 1
  1. 1.Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations