Completeness-Aware Rule Learning from Knowledge Graphs

  • Thomas Pellissier TanonEmail author
  • Daria StepanovaEmail author
  • Simon Razniewski
  • Paramita Mirza
  • Gerhard Weikum
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10587)


Knowledge graphs (KGs) are huge collections of primarily encyclopedic facts. They are widely used in entity recognition, structured search, question answering, and other important tasks. Rule mining is commonly applied to discover patterns in KGs. However, unlike in traditional association rule mining, KGs provide a setting with a high degree of incompleteness, which may result in the wrong estimation of the quality of mined rules, leading to erroneous beliefs such as all artists have won an award, or hockey players do not have children.

In this paper we propose to use (in-)completeness meta-information to better assess the quality of rules learned from incomplete KGs. We introduce completeness-aware scoring functions for relational association rules. Moreover, we show how one can obtain (in-)completeness meta-data by learning rules about numerical patterns of KG edge counts. Experimental evaluation both on real and synthetic datasets shows that the proposed rule ranking approaches have remarkably higher accuracy than the state-of-the-art methods in uncovering missing facts.


  1. 1.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-76298-0_52 CrossRefGoogle Scholar
  2. 2.
    Bollacker, K.D., Cook, R.P., Tufts, P.: Freebase: a shared database of structured general human knowledge. In: AAAI, pp. 1962–1963 (2007)Google Scholar
  3. 3.
    Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: AAAI, pp. 2302–2310 (2010)Google Scholar
  4. 4.
    d’Amato, C., Staab, S., Tettamanzi, A.G., Minh, T.D., Gandon, F.: Ontology enrichment by discovering multi-relational association rules from ontological knowledge bases. In: SAC, pp. 333–338 (2016)Google Scholar
  5. 5.
    Darari, F., Nutt, W., Pirrò, G., Razniewski, S.: Completeness statements about RDF data sources and their use for query answering. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 66–83. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41335-3_5 CrossRefGoogle Scholar
  6. 6.
    Darari, F., Razniewski, S., Prasojo, R.E., Nutt, W.: Enabling fine-grained RDF data completeness assessment. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 170–187. Springer, Cham (2016). doi: 10.1007/978-3-319-38791-8_10 Google Scholar
  7. 7.
    Dehaspe, L., De Raedt, L.: Mining association rules in multiple relations. In: Lavrač, N., Džeroski, S. (eds.) ILP 1997. LNCS, vol. 1297, pp. 125–132. Springer, Heidelberg (1997). doi: 10.1007/3540635149_40 CrossRefGoogle Scholar
  8. 8.
    Doppa, J.R., Sorower, S., NasrEsfahani, M., Orr, J.W., Dietterich, T.G., Fern, X., Tadepalli, P., Irvine, J.: Learning rules from incomplete examples via implicit mention models. In: ACML, pp. 197–212 (2011)Google Scholar
  9. 9.
    Etzioni, O., Golden, K., Weld, D.S.: Sound and efficient closed-world reasoning for planning. AI 89(1–2), 113–148 (1997)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gad-Elrab, M.H., Stepanova, D., Urbani, J., Weikum, G.: Exception-enriched rule learning from knowledge graphs. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 234–251. Springer, Cham (2016). doi: 10.1007/978-3-319-46523-4_15 CrossRefGoogle Scholar
  11. 11.
    Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting completeness in knowledge bases. In: WSDM, pp. 375–383 (2017)Google Scholar
  12. 12.
    Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB 24, 707–730 (2015)CrossRefGoogle Scholar
  13. 13.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of ICLP/SLP, pp. 1070–1080 (1988)Google Scholar
  14. 14.
    Goethals, B., Van den Bussche, J.: Relational association rules: getting Warmer. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS, vol. 2447, pp. 125–139. Springer, Heidelberg (2002). doi: 10.1007/3-540-45728-3_10 CrossRefGoogle Scholar
  15. 15.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for owl knowledge base systems. Web Semant. Sci. Serv. World Wide Web 3(2–3), 158–182 (2011)Google Scholar
  16. 16.
    Józefowska, J., Lawrynowicz, A., Lukaszewski, T.: The role of semantics in mining frequent patterns from knowledge bases in description logics with rules. TPLP 10(3), 251–289 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax specification (1999)Google Scholar
  18. 18.
    Law, M., Russo, A., Broda, K.: Inductive learning of answer set programs. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 311–325. Springer, Cham (2014). doi: 10.1007/978-3-319-11558-0_22 Google Scholar
  19. 19.
    Levy, A.Y.: Obtaining complete answers from incomplete databases. VLDB 96, 402–412 (1996)Google Scholar
  20. 20.
    Lisi, F.A.: Inductive logic programming in databases: from Datalog to DL+log. TPLP 10(3), 331–359 (2010)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: a knowledge base from multilingual Wikipedias. In: CIDR (2015)Google Scholar
  22. 22.
    Mirza, P., Razniewski, S., Darari, F., Weikum, G.: Cardinal virtues: extracting relation cardinalities from text. ACL (2017)Google Scholar
  23. 23.
    Mirza, P., Razniewski, S., Nutt, W.: Expanding Wikidata’s parenthood information by 178%, or how to mine relation cardinality information. In: ISWC 2016 Posters & Demos (2016)Google Scholar
  24. 24.
    Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8(3), 489–508 (2017)CrossRefGoogle Scholar
  25. 25.
    Pellissier Tanon, T., Vrandečić, D., Schaffert, S., Steiner, T., Pintscher, L.: From Freebase to Wikidata: the great migration. In: Proceedings of WWW, pp. 1419–1428 (2016)Google Scholar
  26. 26.
    Prasojo, R.E., Darari, F., Razniewski, S., Nutt, W.: Managing and consuming completeness information for Wikidata using COOL-WD. In: COLD@ISWC (2016)Google Scholar
  27. 27.
    Sazonau, V., Sattler, U., Brown, G.: General terminology induction in OWL. In: ISWC, pp. 533–550 (2015)Google Scholar
  28. 28.
    Wang, Z., Li, J.: RDF2Rules: learning rules from RDF knowledge bases by mining frequent predicate cycles. CoRR abs/1512.07734 (2015)Google Scholar
  29. 29.
    Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing YAGO: scalable machine learning for linked data. In: WWW, pp. 271–280 (2012)Google Scholar
  30. 30.
    Wang, Z., et al.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Max Planck Institute of InformaticsSaarbrückenGermany
  2. 2.Free University of Bozen-BolzanoBolzanoItaly

Personalised recommendations