Advertisement

A Decidable Very Expressive Description Logic for Databases

  • Alessandro Artale
  • Enrico FranconiEmail author
  • Rafael Peñaloza
  • Francesco Sportelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10587)

Abstract

We introduce \(\mathcal{DLR}^+\), an extension of the n-ary propositionally closed description logic \(\mathcal{DLR}\) to deal with attribute-labelled tuples (generalising the positional notation), projections of relations, and global and local objectification of relations, able to express inclusion, functional, key, and external uniqueness dependencies. The logic is equipped with both TBox and ABox axioms. We show how a simple syntactic restriction on the appearance of projections sharing common attributes in a \(\mathcal{DLR}^+\) knowledge base makes reasoning in the language decidable with the same computational complexity as \(\mathcal{DLR}\). The obtained \(\mathcal{DLR}^{\pm }\) n-ary description logic is able to encode more thoroughly conceptual data models such as EER, UML, and ORM.

References

  1. 1.
    Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Reasoning over extended ER models. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 277–292. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75563-0_20 CrossRefGoogle Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory Implementation and Applications. Cambridge University Press, New York (2003)zbMATHGoogle Scholar
  3. 3.
    Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artif. Intell. 168(1–2), 70–118 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification constraints and functional dependencies in description logics. In: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001, pp. 155–160. Morgan Kaufmann (2001)Google Scholar
  5. 5.
    Calvanese, D., Fischl, W., Pichler, R., Sallinger, E., Simkus, M.: Capturing relational schemas and functional dependencies in RDFS. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI), pp. 1003–1011. AAAI Press (2014)Google Scholar
  6. 6.
    Calvanese, D., Giacomo, G.D., Lenzerini, M.: Conjunctive query containment and answering under description logic constraints. ACM Trans. Comput. Logic 9(3), 22:1–22:31 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chandra, A.K., Vardi, M.Y.: The implication problem for functional and inclusion dependencies is undecidable. SIAM J. Comput. 14(3), 671–677 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Franconi, E., Mosca, A., Solomakhin, D.: ORM2: formalisation and encoding in OWL2. In: International Workshop on Fact-Oriented Modeling (ORM 2012), pp. 368–378 (2012)Google Scholar
  9. 9.
    Halpin, T., Morgan, T.: Information Modeling and Relational Databases, 2nd edn. Morgan Kaufmann, San Francisco (2008)Google Scholar
  10. 10.
    Horrocks, I., Sattler, U., Tessaris, S., Tobies, S.: How to decide query containment under constraints using a description logic. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNAI, vol. 1955, pp. 326–343. Springer, Heidelberg (2000). doi: 10.1007/3-540-44404-1_21 CrossRefGoogle Scholar
  11. 11.
    Kanellakis, P.C.: Elements of relational database theory. In: Meyer, A., Nivat, M., Paterson, M., Perrin, D., van Leeuwen, J. (eds.) The Handbook of Theoretical Computer Science, vol. B, Chap. 17, pp. 1075–1144. North Holland (1990)Google Scholar
  12. 12.
    Lukasiewicz, T., Cali, A., Gottlob, G.: A general datalog-based framework for tractable query answering over ontologies. Web Semant. Sci. Serv. Agents World Wide Web 14, 57–83 (2012)CrossRefGoogle Scholar
  13. 13.
    Patel-Schneider, P.F., Franconi, E.: Ontology constraints in incomplete and complete data. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 444–459. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-35176-1_28 CrossRefGoogle Scholar
  14. 14.
    Sportelli, F.: NORMA: A software for intelligent conceptual modeling. In: Proceedings of the Joint Ontology Workshops 2016 (JOWO-2016) (2016). http://ceurws.org/Vol-1660/demo-paper3.pdf
  15. 15.
    Sportelli, F., Franconi, E.: Formalisation of ORM derivation rules and their mapping into OWL. In: Debruyne, C., Panetto, H., Meersman, R., Dillon, T., Kühn, E., O’Sullivan, D., Ardagna, C.A. (eds.) OTM 2016. LNCS, vol. 10033, pp. 827–843. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  16. 16.
    Toman, D., Weddell, G.E.: Applications and extensions of PTIME description logics with functional constraints. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009, pp. 948–954 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alessandro Artale
    • 1
  • Enrico Franconi
    • 1
    Email author
  • Rafael Peñaloza
    • 1
  • Francesco Sportelli
    • 1
  1. 1.KRDB Research CentreFree University of Bozen-BolzanoBolzanoItaly

Personalised recommendations