Advertisement

Cost-Driven Ontology-Based Data Access

  • Davide Lanti
  • Guohui XiaoEmail author
  • Diego Calvanese
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10587)

Abstract

SPARQL query answering in ontology-based data access (OBDA) is carried out by translating into SQL queries over the data source. Standard translation techniques try to transform the user query into a union of conjunctive queries (UCQ), following the heuristic argument that UCQs can be efficiently evaluated by modern relational database engines. In this work, we show that translating to UCQs is not always the best choice, and that, under certain conditions on the interplay between the ontology, the mappings, and the statistics of the data, alternative translations can be evaluated much more efficiently. To find the best translation, we devise a cost model together with a novel cardinality estimation that takes into account all such OBDA components. Our experiments confirm that (i) alternatives to the UCQ translation might produce queries that are orders of magnitude more efficient, and (ii) the cost model we propose is faithful to the actual query evaluation cost, and hence is well suited to select the best translation.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley Publishing Co., Boston (1995)zbMATHGoogle Scholar
  2. 2.
    Bienvenu, M., Ortiz, M., Simkus, M., Xiao, G.: Tractable queries for lightweight description logics. In: Proceedings of IJCAI, IJCAI/AAAI (2013)Google Scholar
  3. 3.
    Bursztyn, D., Goasdoué, F., Manolescu, I.: Efficient query answering in DL-Lite through FOL reformulation (extended abstract). In: Proceedings of DL, vol. 1350. CEUR, CEUR-WS.org (2015). http://ceur-ws.org/Vol-1350/paper-15.pdf
  4. 4.
    Bursztyn, D., Goasdoué, F., Manolescu, I.: Reformulation-based query answering in RDF: alternatives and performance. PVLDB 8(12), 1888–1891 (2015). http://www.vldb.org/pvldb/vol8/p1888-bursztyn.pdf Google Scholar
  5. 5.
    Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M., Rodriguez-Muro, M., Xiao, G.: Ontop: answering SPARQL queries over relational databases. Semant. Web J. 8(3), 471–487 (2017). http://dx.doi.org/10.3233/SW-160217 CrossRefGoogle Scholar
  6. 6.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. JAR 39(3), 385–429 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C Recommendation, W3C, September 2012. http://www.w3.org/TR/r2rml/
  8. 8.
    DeWitt, D.J.: The Wisconsin benchmark: past, present, and future. In: Gray, J. (ed.) The Benchmark Handbook for Database and Transaction Systems, 2nd edn. Morgan Kaufmann, San Mateo (1993)Google Scholar
  9. 9.
    Di Pinto, F., Lembo, D., Lenzerini, M., Mancini, R., Poggi, A., Rosati, R., Ruzzi, M., Savo, D.F.: Optimizing query rewriting in ontology-based data access. In: Proceedings of EDBT, pp. 561–572. ACM Press and Addison Wesley (2013)Google Scholar
  10. 10.
    Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C Recommendation, W3C, March 2013. http://www.w3.org/TR/sparql11-query
  11. 11.
    Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: Exponential lower bounds and separation for query rewriting. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 263–274. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31585-5_26 CrossRefGoogle Scholar
  12. 12.
    Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with OWL 2 QL. In: Proceedings of KR, pp. 275–285 (2012)Google Scholar
  13. 13.
    Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): concepts and abstract syntax. W3C Recommendation, W3C, February 2004. http://www.w3.org/TR/rdf-concepts/
  14. 14.
    Lanti, D., Rezk, M., Xiao, G., Calvanese, D.: The NPD benchmark: reality check for OBDA systems. In: Proceedings of EDBT, pp. 617–628 (2015). http://openproceedings.org/
  15. 15.
    Lanti, D., Xiao, G., Calvanese, D.: Cost-driven ontology-based data access (extended version). CoRR abs/1707.06974 (2017). http://arxiv.org/abs/1707.06974
  16. 16.
    Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Language Profiles, 2nd edn. W3C Recommendation, W3C, December 2012. http://www.w3.org/TR/owl2-profiles/
  17. 17.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-77688-8_5 CrossRefGoogle Scholar
  18. 18.
    Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-Lite ontologies. In: Proceedings of KR, pp. 308–318 (2012)Google Scholar
  19. 19.
    Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings. J. Web Semant. 33, 141–169 (2015)CrossRefGoogle Scholar
  20. 20.
    Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 5th edn. McGraw-Hill Book Company, Boston (2005)zbMATHGoogle Scholar
  21. 21.
    Swami, A., Schiefer, K.B.: On the estimation of join result sizes. In: Jarke, M., Bubenko, J., Jeffery, K. (eds.) EDBT 1994. LNCS, vol. 779, pp. 287–300. Springer, Heidelberg (1994). doi: 10.1007/3-540-57818-8_58 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.KRDB Research Centre for Knowledge and DataFree University of Bozen-BolzanoBolzanoItaly

Personalised recommendations