Delayed-Choice Semantics for Pomset Families and Message Sequence Graphs

  • Clemens DubslaffEmail author
  • Christel Baier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10500)


Message sequence charts (MSCs) are diagrams widely used to describe communication scenarios. Their higher-order formalism is provided by graphs over MSCs, called message sequence graphs (MSGs), which naturally induce a non-interleaving linear-time semantics in terms of a pomset family. Besides this pomset semantics, an operational semantics for MSGs was standardized by the ITU-T as an interleaving branching-time semantics using a process-algebraic approach. A key ingredient in the latter semantics is delayed choice, formalizing that choices between communication scenarios are only made when they are inevitable. In this paper, an approach towards branching-time semantics for pomset families that follows the concept of delayed choice is proposed. First, transition-system semantics are provided where global states comprise cuts of pomsets represented either by suffixes or prefixes of family members. Second, an event-structure semantics is presented those benefit is to maintain the causal dependencies of events provided by the pomset family. These semantics are also investigated in the context of pomset families generated by MSGs.



The authors thank Arend Rensink and Joost-Pieter Katoen for their valuable comments on this paper.


  1. 1.
    Alur, R., Holzmann, G.J., Peled, D.: An analyzer for message sequence charts. In: Software Concepts and Tools, pp. 304–313 (1996)Google Scholar
  2. 2.
    Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer, Heidelberg (1999). doi: 10.1007/3-540-48320-9_10 CrossRefGoogle Scholar
  3. 3.
    Baeten, J.C.M., Mauw, S.: Delayed choice: an operator for joining message sequence charts. In: Hogrefe, D., Leue, S. (eds.) FORTE 1994. IFIPAICT, pp. 340–354. Springer, Boston (1994)Google Scholar
  4. 4.
    Bergstra, J.A., Bethke, I., Ponse, A.: Process algebra with iteration and nesting. Comput. J. 37(4), 243 (1994)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bollig, B., Kuske, D., Meinecke, I.: Propositional dynamic logic for message-passing systems. Log. Methods Comput. Sci. 6(3:16), 1–31 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS. Comput. Netw. 14, 25–59 (1987)Google Scholar
  7. 7.
    Chakraborty, J., D’Souza, D., Narayan Kumar, K.: Analysing message sequence graph specifications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 549–563. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16558-0_45 CrossRefGoogle Scholar
  8. 8.
    Dubslaff, C., Baier, C.: Quantitative analysis of communication scenarios. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 76–92. Springer, Cham (2015). doi: 10.1007/978-3-319-22975-1_6 CrossRefGoogle Scholar
  9. 9.
    Genest, B., Muscholl, A.: Message sequence charts: a survey. In: ACSD, pp. 2–4 (2005)Google Scholar
  10. 10.
    Groote, J.F.: Transition system specifications with negative premises. Theor. Comput. Sci. 118(2), 263–299 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    OM Group: Unified modeling language (UML): Superstructure version 2.4.1, August 2011.
  12. 12.
    Hélouët, L., Jard, C., Caillaud, B.: An event structure based semantics for high-level message sequence charts. Math. Struct. Comput. Sci. 12(4), 377–402 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Henriksen, J.G., Mukund, M., Kumar, K.N., Sohoni, M., Thiagarajan, P.S.: A theory of regular MSC languages. Inf. Comput. 202, 1–38 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Heymer, S.: A semantics for MSC based on Petri-net components. In: Proceedings of the 2nd Workshop of the SDL Forum Society on SDL and MSC, SAM 2000 (2000)Google Scholar
  15. 15.
    ITU-T. Message Sequence Chart (MSC). Z.120 v1.0 (1993)Google Scholar
  16. 16.
    ITU-T: Message Sequence Chart (MSC). Z.120 v2.0 (1996)Google Scholar
  17. 17.
    ITU-T: Annex B: Formal semantics of Message Sequence Charts. Z.120 v2.2 (1998)Google Scholar
  18. 18.
    ITU-T: Message Sequence Chart (MSC). Z.120 v5.0 (2011)Google Scholar
  19. 19.
    Katoen, J., Lambert, L.: Pomsets for message sequence charts. In: 8th GI/ITG-Fachgespraech, pp. 197–207. Shaker Verlag (1998)Google Scholar
  20. 20.
    Levin, V., Peled, D.: Verification of message sequence charts via template matching. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997/TAPSOFT 1997. LNCS, vol. 1214, pp. 652–666. Springer, Heidelberg (1997). doi: 10.1007/BFb0030632 CrossRefGoogle Scholar
  21. 21.
    Madhusudan, P.: Reasoning about sequential and branching behaviours of message sequence graphs. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 809–820. Springer, Heidelberg (2001). doi: 10.1007/3-540-48224-5_66 CrossRefGoogle Scholar
  22. 22.
    Mauw, S., Reniers, M.A.: An algebraic semantics of basic message sequence charts. Comput. J. 37, 269–277 (1994)CrossRefGoogle Scholar
  23. 23.
    Mauw, S., Reniers, M.A.: Operational semantics for MSC’96. Comput. Netw. 31(17), 1785–1799 (1999)CrossRefGoogle Scholar
  24. 24.
    Mauw, S., Reniers, M.A.: High-level message sequence charts. In: SDL Forum, pp. 291–306 (1997)Google Scholar
  25. 25.
    Milner, R.: Communication and Concurrency. PHI Series in Computer Science. Prentice Hall, Upper Saddle River (1989)zbMATHGoogle Scholar
  26. 26.
    Muscholl, A., Peled, D.: Message sequence graphs and decision problems on Mazurkiewicz traces. In: Kutyłowski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999). doi: 10.1007/3-540-48340-3_8 CrossRefGoogle Scholar
  27. 27.
    Muscholl, A., Peled, D.: Deciding properties of message sequence charts. In: Leue, S., Systä, T.J. (eds.) Scenarios: Models, Transformations and Tools. LNCS, vol. 3466, pp. 43–65. Springer, Heidelberg (2005). doi: 10.1007/11495628_3 CrossRefGoogle Scholar
  28. 28.
    Muscholl, A., Peled, D., Su, Z.: Deciding properties for message sequence charts. In: Nivat, M. (ed.) FoSSaCS 1998. LNCS, vol. 1378, pp. 226–242. Springer, Heidelberg (1998). doi: 10.1007/BFb0053553 CrossRefGoogle Scholar
  29. 29.
    Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains. Theor. Comput. Sci. 13(1), 85–108 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pratt, V.: Modeling concurrency with partial orders. Int. J. Parallel Program. 15, 33–71 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Reniers, M.A.: Message sequence chart: Syntax and semantics. Ph.D. thesis, Eindhoven University of Technology, June 1999Google Scholar
  32. 32.
    Rensink, A.: A complete theory of deterministic event structures. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 160–174. Springer, Heidelberg (1995). doi: 10.1007/3-540-60218-6_12 CrossRefGoogle Scholar
  33. 33.
    Rensink, A., Wehrheim, H.: Weak sequential composition in process algebras. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 226–241. Springer, Heidelberg (1994). doi: 10.1007/978-3-540-48654-1_20 Google Scholar
  34. 34.
    Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 4, pp. 1–148. Oxford University Press, Oxford (1995)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations