Advertisement

iDSL: Automated Performance Evaluation of Service-Oriented Systems

  • Freek van den Berg
  • Boudewijn R. Haverkort
  • Jozef Hooman
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10500)

Abstract

Service-oriented systems interconnect with other systems in a time critical manner, making their performance vital. For this purpose, we propose an automated performance evaluation approach for service-oriented systems which includes both performance measurement and prediction. The approach makes use of the iDSL language, a domain specific language tailored to modeling service-oriented systems, and the iDSL toolchain to evaluate iDSL models, as follows. First, discrete-event simulation yields many performance artifacts, e.g., latency breakdown charts, cumulative distribution graphs, and latency bar charts. Second, timed automata-based model checking yields absolute latency bounds. Third, probabilistic timed automata-based model checking leads to exact latency distributions for each service. We successfully validated our approach; several case studies on interventional X-ray systems displayed similar measured and predicted outcomes.

References

  1. 1.
    Bogdoll, J., David, A., Hartmanns, A., Hermanns, H.: MCTAU: bridging the gap between Modest and UPPAAL. In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 227–233. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31759-0_16 CrossRefGoogle Scholar
  2. 2.
    Bohnenkamp, H., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: Modest: a compositional modeling formalism for hard and softly timed systems. IEEE Trans. Softw. Eng. 32(10), 812–830 (2006)CrossRefGoogle Scholar
  3. 3.
    Brinksma, H., Katoen, J.-P., Langerak, R., Latella, D.: Partial order models for quantitative extensions of LOTOS. Comput. Netw. ISDN Syst. 30(9), 925–950 (1998)CrossRefGoogle Scholar
  4. 4.
    D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation of optimal schedulers for probabilistic timed automata. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 99–114. Springer, Cham (2016). doi: 10.1007/978-3-319-33693-0_7 CrossRefGoogle Scholar
  5. 5.
    de Gooijer, T., Jansen, A., Koziolek, H., Koziolek, A.: An industrial case study of performance and cost design space exploration. In: Proceedings of the 3rd International Conference on Performance Engineering, pp. 205–216. WOSP/SIPEW, ACM (2012)Google Scholar
  6. 6.
    Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). doi: 10.1007/3-540-45848-4_57 CrossRefGoogle Scholar
  7. 7.
    Hahn, E., Hartmanns, A., Hermanns, H.: Reachability and reward checking for stochastic timed automata. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 70, 125–140 (2014)Google Scholar
  8. 8.
    Hahn, E., Hartmanns, A., Hermanns, H., Katoen, J.-P.: A compositional modelling and analysis framework for stochastic hybrid systems. Formal Methods Syst. Des. 43(2), 191–232 (2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hartmanns, A.: Model-checking and simulation for stochastic timed systems. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 372–391. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25271-6_20 CrossRefGoogle Scholar
  10. 10.
    Hartmanns, A., Hermanns, H.: The Modest toolset: an integrated environment for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54862-8_51 CrossRefGoogle Scholar
  11. 11.
    Haveman, S., Bonnema, M.: Requirements for high level models supporting design space exploration in model-based systems engineering. In: Procedia Computer Science, vol. 16, pp. 293–302. Elsevier (2013)Google Scholar
  12. 12.
    Johnson, J.: Designing with the Mind in Mind: Simple Guide to Understanding User Interface Design Rules. Elsevier, Amsterdam (2010)Google Scholar
  13. 13.
    Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: An efficient K-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kienhuis, B., Deprettere, E.F., van der Wolf, P., Vissers, K.: A methodology to design programmable embedded systems. In: Deprettere, E.F., Teich, J., Vassiliadis, S. (eds.) SAMOS 2001. LNCS, vol. 2268, pp. 18–37. Springer, Heidelberg (2002). doi: 10.1007/3-540-45874-3_2 CrossRefGoogle Scholar
  15. 15.
    Kontogiannis, K., Lewis, G., Smith, D., Litoiu, M., Muller, H., Schuster, S., Stroulia, E.: The landscape of service-oriented systems: a research perspective. In: Proceedings of the International Workshop on Systems Development in SOA Environments. IEEE Computer Society (2007)Google Scholar
  16. 16.
    Lee, I., Leung, J.Y., Son, S.H.: Handbook of Real-Time and Embedded Systems. CRC Press, Boca Raton (2007)zbMATHGoogle Scholar
  17. 17.
    Philippou, A., Georghiou, C., Philippou, G.: A generalized geometric distribution and some of its properties. Stat. Probab. Lett. 1(4), 171–175 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pimentel, A., Hertzberger, L., Lieverse, P., van der Wolf, P., Deprettere, E.: Exploring embedded-systems architectures with Artemis. IEEE Comput. 34(11), 57–63 (2001)CrossRefGoogle Scholar
  19. 19.
    Prince, J., Links, J.: Medical Imaging Signals and Systems. Pearson Prentice Hall, Upper Saddle River (2006)Google Scholar
  20. 20.
    Racine, J.: GNUplot 4.0: a portable interactive plotting utility. J. Appl. Econom. 21(1), 133–141 (2006)CrossRefGoogle Scholar
  21. 21.
    Rosso, C.D.: Software performance tuning of software product family architectures: two case studies in the real-time embedded systems domain. J. Syst. Softw. 81(1), 1–19 (2008)CrossRefGoogle Scholar
  22. 22.
    van den Berg, F.: Automated performance evaluation of service-oriented systems. Ph.D. thesis, University of Twente (2017)Google Scholar
  23. 23.
    van den Berg, F., Haverkort, B.R., Hooman, J.: Efficiently computing latency distributions by combined performance evaluation techniques. In: Proceedings of the 9th EAI International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2015, pp. 158–163. ICST (2015)Google Scholar
  24. 24.
    van den Berg, F., Hooman, J., Hartmanns, A., Haverkort, B.R., Remke, A.: Computing response time distributions using iterative probabilistic model checking. In: Beltrán, M., Knottenbelt, W., Bradley, J. (eds.) EPEW 2015. LNCS, vol. 9272, pp. 208–224. Springer, Cham (2015). doi: 10.1007/978-3-319-23267-6_14 CrossRefGoogle Scholar
  25. 25.
    van den Berg, F., Remke, A., Haverkort, B.R.: A domain specific language for performance evaluation of medical imaging systems. In: 5th Workshop on Medical Cyber-Physical Systems. OpenAccess Series in Informatics, vol. 36, pp. 80–93. Schloss Dagstuhl (2014)Google Scholar
  26. 26.
    van den Berg, F., Remke, A., Haverkort, B.R.: iDSL: automated performance prediction and analysis of medical imaging systems. In: Beltrán, M., Knottenbelt, W., Bradley, J. (eds.) EPEW 2015. LNCS, vol. 9272, pp. 227–242. Springer, Cham (2015). doi: 10.1007/978-3-319-23267-6_15 CrossRefGoogle Scholar
  27. 27.
    Zurawski, R.: Embedded Systems Handbook. CRC Press, Boca Raton (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Freek van den Berg
    • 1
  • Boudewijn R. Haverkort
    • 1
  • Jozef Hooman
    • 2
    • 3
  1. 1.Design and Analysis of Communication SystemsUniversity of TwenteEnschedeThe Netherlands
  2. 2.TNO-ESIEindhovenThe Netherlands
  3. 3.Radboud UniversityNijmegenThe Netherlands

Personalised recommendations