Realizing an RDF-Based Information Model for a Manufacturing Company – A Case Study

  • Niklas Petersen
  • Lavdim Halilaj
  • Irlán Grangel-González
  • Steffen Lohmann
  • Christoph Lange
  • Sören Auer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10588)

Abstract

The digitization of the industry requires information models describing assets and information sources of companies to enable the semantic integration and interoperable exchange of data. We report on a case study in which we realized such an information model for a global manufacturing company using semantic technologies. The information model is centered around machine data and describes all relevant assets, key terms and relations in a structured way, making use of existing as well as newly developed RDF vocabularies. In addition, it comprises numerous RML mappings that link different data sources required for integrated data access and querying via SPARQL. The technical infrastructure and methodology used to develop and maintain the information model is based on a Git repository and utilizes the development environment VoCol as well as the Ontop framework for Ontology Based Data Access. Two use cases demonstrate the benefits and opportunities provided by the information model. We evaluated the approach with stakeholders and report on lessons learned from the case study.

References

  1. 1.
    IEC 62264–1: Enterprise-control system integration part 1: models and terminology. Standard, IEC (2013)Google Scholar
  2. 2.
    Adolphs, P., et al.: Reference Architecture Model Industrie 4.0 (RAMI4.0). Status report, ZVEI and VDI (2015)Google Scholar
  3. 3.
    Bellatreche, L., Pierra, G.: OntoAPI: an ontology-based data integration approach by an a priori articulation of ontologies. In: DEXA (2007)Google Scholar
  4. 4.
    Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M.: How virtualization, decentralization and network building change the manufacturing landscape: an industry 4.0 perspective. Int. J. Mech. Aerosp. Ind. Mechatron. Eng. 8(1), 37–44 (2014)Google Scholar
  5. 5.
    Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M., Rodriguez-Muro, M., Xiao, G.: Ontop: answering SPARQL queries over relational databases. Semant. Web 8(3), 471–487 (2017)CrossRefGoogle Scholar
  6. 6.
    Golebiowska, J., Dieng-Kuntz, R., Corby, O., Mousseau, D.: Building and exploiting ontologies for an automobile project memory. In: K-CAP (2001)Google Scholar
  7. 7.
    Grangel-González, I., Halilaj, L., Auer, S., Lohmann, S., Lange, C., Collarana, D.: An RDF-based approach for implementing industry 4.0 components with administration shells. In: ETFA (2016)Google Scholar
  8. 8.
    Greenly, W., Sandeman-Craik, C., Otero, Y., Streit, J.: Case study: contextual search for Volkswagen and the automotive industry (2011). https://www.w3.org/2001/sw/sweo/public/UseCases/Volkswagen/
  9. 9.
    Halilaj, L., Grangel-González, I., Vidal, M., Lohmann, S., Auer, S.: Proactive prevention of false-positive conflicts in distributed ontology development. In: KEOD (2016)Google Scholar
  10. 10.
    Halilaj, L., Petersen, N., Grangel-González, I., Lange, C., Auer, S., Coskun, G., Lohmann, S.: VoCol: an integrated environment to support version-controlled vocabulary development. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 303–319. Springer, Cham (2016). doi:10.1007/978-3-319-49004-5_20 CrossRefGoogle Scholar
  11. 11.
    Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios. In: 49th Hawaii International Conference on System Sciences (HICSS), pp. 3928–3937. IEEE (2016)Google Scholar
  12. 12.
    Kharlamov, E., Brandt, S., Jimenez-Ruiz, E., Kotidis, Y., Lamparter, S., Mailis, T., Neuenstadt, C., Özçep, Ö., Pinkel, C., Svingos, C., et al.: Ontology-based integration of streaming and static relational data with OPTIQUE. In: SIGMOD (2016)Google Scholar
  13. 13.
    Kharlamov, E.: Capturing industrial information models with ontologies and constraints. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 325–343. Springer, Cham (2016). doi:10.1007/978-3-319-46547-0_30 CrossRefGoogle Scholar
  14. 14.
    Kharlamov, E., et al.: Ontology based access to exploration data at statoil. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 93–112. Springer, Cham (2015). doi:10.1007/978-3-319-25010-6_6 CrossRefGoogle Scholar
  15. 15.
    Kharlamov, E., Mailis, T., Mehdi, G., Neuenstadt, C., Özçep, Ö., Roshchin, M., Solomakhina, N., Soylu, A., Svingos, C., Brandt, S., et al.: Semantic access to streaming and static data at Siemens. Web Semant. (2017, in press)Google Scholar
  16. 16.
    Kim, M., Wang, S.T., Ostrowski, D., Rychtyckyj, N., Macneille, P.: Technology outlook: federated ontologies and industrial applications. Semant. Comput. 10(1), 101–120 (2016)CrossRefGoogle Scholar
  17. 17.
    Ostrowski, D., Rychtyckyj, N., MacNeille, P., Kim, M.: Integration of big data using semantic web technologies. In: ICSC (2016)Google Scholar
  18. 18.
    Petersen, N., Galkin, M., Lange, C., Lohmann, S., Auer, S.: Monitoring and automating factories using semantic models. In: Li, Y.-F., Hu, W., Dong, J.S., Antoniou, G., Wang, Z., Sun, J., Liu, Y. (eds.) JIST 2016. LNCS, vol. 10055, pp. 315–330. Springer, Cham (2016). doi:10.1007/978-3-319-50112-3_24 CrossRefGoogle Scholar
  19. 19.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)MATHGoogle Scholar
  20. 20.
    Rodríguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data access: Ontop of databases. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 558–573. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41335-3_35 CrossRefGoogle Scholar
  21. 21.
    Rychtyckyj, N., Raman, V., Sankaranarayanan, B., Kumar, P.S., Khemani, D.: Ontology re-engineering: a case study from the automotive industry. In: AAAI (2016)Google Scholar
  22. 22.
    Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. Knowl. Eng. Rev. 11(2), 93–155 (1996)CrossRefGoogle Scholar
  23. 23.
    Wache, H., Voegele, T., Visser, T., Stuckenschmidt, H., Schuster, H., Neumann, G., Huebner, S.: Ontology-based integration of information - a survey of existing approaches. In: IJCAI-01 Workshop: Ontologies and Information (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Niklas Petersen
    • 1
    • 2
  • Lavdim Halilaj
    • 1
    • 2
  • Irlán Grangel-González
    • 1
    • 2
  • Steffen Lohmann
    • 2
  • Christoph Lange
    • 1
    • 2
  • Sören Auer
    • 3
    • 4
  1. 1.Enterprise Information Systems (EIS)University of BonnBonnGermany
  2. 2.Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS)Sankt AugustinGermany
  3. 3.Computer ScienceLeibniz University of HannoverHanoverGermany
  4. 4.TIB Leibniz Information Center for Science and TechnologyHannoverGermany

Personalised recommendations