Issues on the Simulation of Geometric Fractures of Bone Models

  • Félix Paulano-GodinoEmail author
  • J. Roberto Jiménez-Pérez
  • Juan J. Jiménez-Delgado
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 27)


The simulation of realistic fracture cases on geometric models representing bone structures is almost an unexplored field of research. These fractured models have many applications in computer-assisted methods that support specialist in fracture reduction interventions. For instance, the generation of specific fracture patterns can provide uncommon cases for training simulators or even can be used to improve machine-learning applications. This paper focuses on the issues to be considered in the generation of fractures on geometric models that represent bone structures. The main recent contributions for fracturing geometric models are examined and the challenges in terms of the application of real bone fracture patterns on geometric models are presented. Moreover, different alternatives for the evaluation of the results obtained by the geometric fracture generation algorithms when applied to bone structures are showed. Finally, the potential applications of the virtual generation of specific bone fractures are described.



This work has been partially supported by the Ministerio de Economía y Competitividad and the European Union (via ERDF funds) through the research project DPI2015-65123-R.


  1. 1.
    Abdel-Wahab, A., Li, S., Silberschmidt, V.V.: Modelling fracture processes in bones (2014). doi: 10.1533/9780857096739.2.268
  2. 2.
    Abdel-Wahab, A.A., Maligno, A.R., Silberschmidt, V.V.: Micro-scale modelling of bovine cortical bone fracture: Analysis of crack propagation and microstructure using X-FEM. Comput. Mater. Sci. 52(1), 128–135 (2012). doi: 10.1016/j.commatsci.2011.01.021
  3. 3.
    Allegre, R., Barbier, A., Galin, E., Akkouche, S.: A hybrid shape representation for free-form modeling. In: Proceedings of Shape Modeling Applications, 2004. pp. 7–18 (2004). doi: 10.1109/smi.2004.1314489
  4. 4.
    Bo, W., Liang, Z., Yagang, W.: Rigid body simulation with local fracturing effects. In: 2011 Workshop on Digital Media and Digital Content Management, pp. 49–52 (2011). doi: 10.1109/DMDCM.2011.74
  5. 5.
    Desbenoit, B., Galin, E., Akkouche, S.: Modeling cracks and fractures. Visual Comput. 21(8–10), 717–726 (2005). doi: 10.1007/s00371-005-0317-z CrossRefGoogle Scholar
  6. 6.
    Glondu, L., Muguercia, L., Marchal, M., Bosch, C., Rushmeier, H., Dumont, G., Drettakis, G.: Example-based fractured appearance. Comput. Graph. Forum 31(4), 1547–1556 (2012). doi: 10.1111/j.1467-8659.2012.03151.x
  7. 7.
    Gobron, S., Chiba, N.: Visual simulation of crack pattern based on 3D surface cellular automaton. Vis. Comput. 17, 287–309 (2001). doi: 10.1007/s003710100099 CrossRefzbMATHGoogle Scholar
  8. 8.
    Hambli, R., Lespessailles, E., Benhamou, C.L.: Integrated remodeling-to-fracture finite element model of human proximal femur behavior. J. Mech. Behav. Biomed. Mater. 17, 89–106 (2012). doi: 10.1016/j.jmbbm.2012.08.011
  9. 9.
    Jiménez, J.J., Paulano, F., Pulido, R., Jiménez, J.: Computer assisted preoperative planning of bone fracture reduction: simulation techniques and new trends. Med. Image Anal. 30, 30–45 (2016). doi: 10.1016/ CrossRefGoogle Scholar
  10. 10.
    Kiapour, A., Kiapour, A.M., Kaul, V., Quatman, C.E., Wordeman, S.C., Hewett, T.E., Demetropoulos, C.K., Goel, V.K.: Finite element model of the knee for investigation of injury mechanisms: development and validation. J. Biomech. Eng. 136(1), 011,002 (2014). doi 10.1115/1.4025692
  11. 11.
    Lefebvre, S., Neyret, F.: Synthesizing Bark. In: Proceedings of the 13th Eurographics Workshop on Rendering, pp. 105–116 (2002)Google Scholar
  12. 12.
    Martinet, A., Galin, E., Desbenoit, B., Akkouche, S.: Procedural modeling of cracks and fractures. In: Proceedings—Shape Modeling International SMI, pp. 346–349 (2004). doi: 10.1109/SMI.2004.1314524
  13. 13.
    Messmer, P., Long, G., Suhm, N., Hehli, M.: Three-dimensional fracture simulation for preoperative planning and education. Eur. J. Trauma 27(4), 171–177 (2001). doi: 10.1007/s00068-001-1065-z
  14. 14.
    Muguercia, L., Bosch, C., Patow, G.: Fracture modeling in computer graphics. Comput. Graph. 45, 86–100 (2014). doi: 10.1016/j.cag.2014.08.006
  15. 15.
    Müller, M., Chentanez, N., Kim, T.Y.: Real time dynamic fracture with volumetric approximate convex decompositions. ACM Trans. Graph. 32(4), 1 (2013). doi: 10.1145/2461912.2461934
  16. 16.
    Neff, M., Fiume, E.: A visual model for blast waves and fracture. In: Proceedings of the 1999 Conference on Graphics Interface, pp. 193–202 (1999)Google Scholar
  17. 17.
    Ning, J.F., Li, S.K.: A fast approach to simulate fracture of rigid body. In: ICALI, International Conference on Audio, Language and Image Processing, Proceedings, pp. 1301–1305 (2010). doi: 10.1109/ICALIP.2010.5685079
  18. 18.
  19. 19.
    Oh, S., Shin, S., Jun, H.: Practical simulation of hierarchical brittle fracture. Comput. Animat. Virtual Worlds 23(3–4), 291–300 (2012). doi: 10.1002/cav.1443 CrossRefGoogle Scholar
  20. 20.
    Ota, T., Yamamoto, I., Morita, R.: Fracture simulation of the femoral bone using the finite-element method: how a fracture initiates and proceeds. J. Bone Miner. Metab. 17(2), 108–112 (1999). doi: 10.1007/s007740050072
  21. 21.
    Pakdel, A., Fialkov, J., Whyne, C.M.: High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures. J. Biomech. 49(9), 1454–1460 (2016). doi: 10.1016/j.jbiomech.2016.03.015
  22. 22.
    Paulano-Godino, F., Jiménez-Delgado, J.J., Pulido-Ramírez, R.: Trends on identification of fractured bone tissue from CT images. In: Proceedings of IV Eccomas Thematic Conference on Computational Vision and Medical Image Processing (VIPIMAGE), pp. 263–269. CRC Press (2013). doi: 10.1201/b15810-47
  23. 23.
    Rodrigues, L., Lopes, D., Folgado, J., Fernandes, P., Pires, E., Casas, E.L., Faleiros, R.: Bone remodelling analysis of a bovine femur for a veterinary implant design. Comput. Methods Biomech. Biomed. Eng. 12(6), 683–690 (2009). doi: 10.1080/10255840902865641 CrossRefGoogle Scholar
  24. 24.
    Rodrigues, L.B., Las Casas, E.B., Lopes, D.S., Folgado, J., Fernandes, P.R., Pires, E.A.C.B., Alves, G.E.S., Faleiros, R.R.: A finite element model to simulate femoral fractures in calves: testing different polymers for intramedullary interlocking nails. Vet. Surg. 41(7), 838–844 (2012). doi: 10.1111/j.1532-950X.2012.01032.x CrossRefGoogle Scholar
  25. 25.
    Sabet, F.A., Raeisi Najafi, A., Hamed, E., Jasiuk, I.: Modelling of bone fracture and strength at different length scales: a review. Interface Focus 6(1), 20150,055 (2016). doi: 10.1098/rsfs.2015.0055
  26. 26.
    Su, J., Schroeder, C., Fedkiw, R.: Energy stability and fracture for frame rate rigid body simulations. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation - SCA 2009, New York, USA, pp. 155–164. ACM, New York (2009). doi: 10.1145/1599470.1599491
  27. 27.
    Ural, A., Mischinski, S.: Multiscale modeling of bone fracture using cohesive finite elements. Eng. Fract. Mech. 103, 141–152 (2013). doi: 10.1016/j.engfracmech.2012.05.008
  28. 28.
    Valette, G., Prévost, S., Lucas, L., Léonard, J.: A dynamic model of cracks development based on a 3D discrete shrinkage volume propagation. Comput. Graph. Forum 27(1), 47–62 (2008). doi: 10.1111/j.1467-8659.2007.01042.x CrossRefGoogle Scholar
  29. 29.
    Wu, J., Aage, N., Westermann, R., Sigmund, O.: Infill optimization for additive manufacturing—approaching bone-like porous structures. IEEE Trans. Vis. Comput. Graph. 2626(c), 1–14 (2017). doi: 10.1109/TVCG.2017.2655523,,

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Félix Paulano-Godino
    • 1
    Email author
  • J. Roberto Jiménez-Pérez
    • 1
  • Juan J. Jiménez-Delgado
    • 1
  1. 1.Universidad de JaénJaénSpain

Personalised recommendations