A Dual-Modal CT/US Kidney Phantom Model for Image-Guided Percutaneous Renal Access

  • João Gomes-FonsecaEmail author
  • Alice Miranda
  • Pedro Morais
  • Sandro Queirós
  • António C. M. Pinho
  • Jaime C. Fonseca
  • Jorge Correia-Pinto
  • Estêvão Lima
  • João L. Vilaça
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 27)


Percutaneous renal access (PRA) is a crucial step in some minimally invasive kidney interventions. During this step, the surgeon inserts a needle through the skin until the kidney target site using fluoroscopy and ultrasound imaging. Recently, new concepts of enhanced image-guided interventions have been introduced in these interventions. However, their validation remains a challenging task. Phantom models have been presented to solve such challenge, using realistic anatomies in a controlled environment. In this work, we evaluate the accuracy of a porcine kidney phantom for validation of novel dual-modal computed tomography (CT)/ultrasound (US) image-guided strategies for PRA. A porcine kidney was combined with a tissue mimicking material (TMM) and implanted fiducial markers (FM). While the TMM mimics the surrounding tissues, the FM are used to accurately assess the registration errors between the US and CT images, providing a valid ground-truth. US and CT image acquisitions of the phantom model were performed and the FM were manually selected on both images. A rigid alignment was performed between the selected FM, presenting a root-mean-square error of 1.1 mm. Moreover, the kidney was manually segmented, presenting volumes of 203 ml and 238 ml for CT and US, respectively. The initial results are promising on achieving a realistic kidney phantom model to develop new strategies for PRA, but further work to improve the manufacturing process and to introduce motion and anatomical artifacts in the phantom is still required.


Image-guided interventions Kidney Percutaneous renal access Porcine phantom 



The authors would like to thank Paulo Marques, Bruno Oliveira, Paulo Mota, Emanuel Carvalho Dias, Manuela Carneiro, Fernando Veloso and to the departments of urology and imagiology of Hospital de Braga for their contribution to this work.


This work has been funded by FEDER funds, through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the project NORTE-01-0145-FEDER-000013, supported by the NORTE 2020, under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). J. Gomes-Fonseca, A. Miranda, P. Morais, and S. Queirós were funded by FCT under the Ph.D. grants PD/BDE/113597/2015, SFRH/BD/52059/2012, SFRH/BD/95438/2013, and SFRH/BD/93443/2013, respectively.


  1. 1.
    Marcovich, R., Smith, A.D.: Percutaneous renal access: tips and tricks. BJU Int. 95(s2), 78–84 (2005)CrossRefGoogle Scholar
  2. 2.
    Knoll, T., Michel, M.S., Alken, P.: Surgical atlas percutaneous nephrolithotomy: the Mannheim technique. BJU Int. 99(1), 213–231 (2007)CrossRefGoogle Scholar
  3. 3.
    de la Rosette, J.J.M.C.H., Laguna, M.P., Rassweiler, J.J., Conort, P.: Training in percutaneous nephrolithotomy–a critical review. Eur. Urol. 54(5), 994–1001 (2008)CrossRefGoogle Scholar
  4. 4.
    de la Rosette, J., Assimos, D., Desai, M., Gutierrez, J., Lingeman, J., Scarpa, R., Tefekli, A.: The clinical research office of the endourological society percutaneous nephrolithotomy global study: indications, complications, and outcomes in 5803 patients. J. Endourol. 25(1), 11–17 (2011)CrossRefGoogle Scholar
  5. 5.
    Rodrigues, P.L., Rodrigues, N.F., Fonseca, J., Lima, E., Vilaça, J.L.: Kidney targeting and puncturing during percutaneous nephrolithotomy: recent advances and future perspectives. J. Endourol. 27(7), 826–834 (2013)CrossRefGoogle Scholar
  6. 6.
    Cleary, K., Peters, T.M.: Image-guided interventions: technology review and clinical applications. Annu. Rev. Biomed. Eng. 12(1), 119–142 (2010)CrossRefGoogle Scholar
  7. 7.
    Li, X., Long, Q., Chen, X., He, D., Dalin, H., He, H.: Real-time ultrasound-guided PCNL using a novel SonixGPS needle tracking system. Urolithiasis 42(4), 341–346 (2014)CrossRefGoogle Scholar
  8. 8.
    Ungi, T., Beiko, D., Fuoco, M., King, F., Holden, M.S., Fichtinger, G., Siemens, D.R.: Tracked ultrasonography snapshots enhance needle guidance for percutaneous renal access: a pilot study. J. Endourol. 28(9), 1040–1045 (2014)CrossRefGoogle Scholar
  9. 9.
    Rodrigues, P.L., Vilaça, J.L., Oliveira, C., Cicione, A., Rassweiler, J., Fonseca, J., Rodrigues, N.F., Correia-Pinto, J., Lima, E.: Collecting system percutaneous access using real-time tracking sensors: first pig model in vivo experience. J. Urol. 190(5), 1932–1937 (2013)CrossRefGoogle Scholar
  10. 10.
    Lima, E., Rodrigues, P.L., Mota, P., Carvalho, N., Dias, E., Correia-Pinto, J., Autorino, R., Vilaça, J.L.: Ureteroscopy-assisted percutaneous kidney access made easy: first clinical experience with a novel navigation system using electromagnetic guidance (IDEAL stage 1). Eur. Urol. 30, 214–226 (2017)Google Scholar
  11. 11.
    Leroy, A., Mozer, P., Payan, Y., Troccaz, J.: Rigid registration of freehand 3D ultrasound and CT-scan kidney images. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004: 7th International Conference, Saint-Malo, France, September 26–29, 2004. Proceedings, Part I, pp. 837–844 (2004)Google Scholar
  12. 12.
    Li, Z.-C., Li, K., Zhan, H.-L., Chen, K., Gu, J., Wang, L.: Augmenting intraoperative ultrasound with preoperative magnetic resonance planning models for percutaneous renal access. Biomed. Eng. Online 11(1), 60–76 (2012)CrossRefGoogle Scholar
  13. 13.
    Xiang, J., Gill, S., Nguan, C.Y., Abolmaesumi, P., Rohling, R.N.: Registration of ultrasound to CT angiography of kidneys: a porcine phantom study. In: Proceedings of SPIE 7625, vol. 7625, p. 762518-8 (2010)Google Scholar
  14. 14.
    Hunt, A., Ristolainen, A., Ross, P., Öpik, R., Krumme, A., Kruusmaa, M.: Low cost anatomically realistic renal biopsy phantoms for interventional radiology trainees. Eur. J. Radiol. 82(4), 594–600 (2013)CrossRefGoogle Scholar
  15. 15.
    Ristolainen, A., Ross, P., Gavšin, J., Semjonov, E., Kruusmaa, M.: Economically affordable anatomical kidney phantom with calyxes for puncture and drainage training in interventional urology and radiology. Acta Radiol. Short Rep. 3(5), 2047981614534231 (2014)Google Scholar
  16. 16.
    Adams, F., Qiu, T., Mark, A., Fritz, B., Kramer, L., Schlager, D., Wetterauer, U., Miernik, A., Fischer, P.: Soft 3D-printed phantom of the human kidney with collecting system. Ann. Biomed. Eng. 45(4), 963–972 (2017)CrossRefGoogle Scholar
  17. 17.
    Thompson, S.M., Ramirez-Giraldo, J.C., Knudsen, B., Grande, J.P., Christner, J.A., Xu, M., Woodrum, D.A., McCollough, C.H., Callstrom, M.R.: Porcine ex vivo liver phantom for dynamic contrast-enhanced computed tomography: development and initial results. Invest. Radiol. 46(9), 586–593 (2011)CrossRefGoogle Scholar
  18. 18.
    DeSimio, T., Baron, T.: New ex-vivo porcine model for endoscopic ultrasound-guided training in transmural puncture and drainage of pancreatic cysts and fluid collections (with videos). Endosc. Ultrasound 4(1), 34 (2015)CrossRefGoogle Scholar
  19. 19.
    Teirlinck, C.J., Bezemer, R.A., Kollmann, C., Lubbers, J., Hoskins, P.R., Ramnarine, K.V., Fish, P., Fredeldt, K.E., Schaarschmidt, U.G.: Development of an example flow test object and comparison of five of these test objects, constructed in various laboratories. Ultrasonics 36(1–5), 653–660 (1998)CrossRefGoogle Scholar
  20. 20.
    Earle, M., De Portu, G., DeVos, E.: Agar ultrasound phantoms for low-cost training without refrigeration. Afr. J. Emerg. Med. 6(1), 18–23 (2016)CrossRefGoogle Scholar
  21. 21.
    Bao, N., Chen, Y., Yue, Y., Li, H., Cui, Z., Zhuang, J., Tian, S., Kang, Y.: Fiducial markers configuration optimization in image-guided surgery. Biomed. Mater. Eng. 24(6), 3361–3371 (2014)Google Scholar
  22. 22.
    Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4(4), 629 (1987)CrossRefGoogle Scholar
  23. 23.
    Hansen, K.L., Nielsen, M.B., Ewertsen, C.: Ultrasonography of the kidney: a pictorial review. Diagnostics (Basel, Switzerland) 6(1), 2 (2015)Google Scholar
  24. 24.
    Lee, D., Koizumi, N., Tsukihara, H., Azuma, T., Nomiya, A., Yoshinaka, K., Sugita, N., Homma, Y., Matsumoto, Y., Mitsuishi, M.: Construction of kidney phantom model with acoustic shadow by rib bones and respiratory organ motion, p. 150007 (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • João Gomes-Fonseca
    • 1
    • 2
    Email author
  • Alice Miranda
    • 1
    • 2
  • Pedro Morais
    • 1
    • 2
    • 3
    • 4
  • Sandro Queirós
    • 1
    • 2
    • 4
    • 5
  • António C. M. Pinho
    • 6
  • Jaime C. Fonseca
    • 5
  • Jorge Correia-Pinto
    • 1
    • 2
    • 7
  • Estêvão Lima
    • 1
    • 2
    • 8
  • João L. Vilaça
    • 1
    • 2
    • 9
  1. 1.School of Medicine, Life and Health Sciences Research Institute (ICVS)University of MinhoBragaPortugal
  2. 2.ICVS/3B’s-PT, Government Associate LaboratoryGuimarãesPortugal
  3. 3.Faculdade de Engenharia, Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia IndustrialUniversidade do PortoPortoPortugal
  4. 4.Lab on Cardiovascular Imaging, and Dynamics, Department of Cardiovascular SciencesKULeuven - University of LeuvenLeuvenBelgium
  5. 5.Algoritmi Center, School of EngineeringUniversity of MinhoGuimarãesPortugal
  6. 6.Department of Mechanical Engineering, School of EngineeringUniversity of MinhoGuimarãesPortugal
  7. 7.Department of Pediatric SurgeryHospital of BragaBragaPortugal
  8. 8.Department of CUF UrologyHospital of BragaBragaPortugal
  9. 9.DIGARC-Technology SchoolPolytechnic Institute of Cávado and AveBarcelosPortugal

Personalised recommendations