Advertisement

Exercise and Childhood Obesity

  • David ThivelEmail author
  • Grace O’Malley
  • Julien Aucouturier
Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

While obesity mainly results from an imbalance between energy intake and expenditure, physical activity has to be part of prevention and treatment strategies, especially among children and adolescents. Increasing physical activity level mainly depends on the ability to perform exercise, necessitating an objective and accurate evaluation of physical fitness, both aerobic and anaerobic. While this chapter describes how overall fitness is altered by pediatric obesity, it also provides clinicians and practitioners with accurate direct and indirect methods of evaluation. Physical activity must be seen as more than a means to increase energy expenditure; it also favors particular compensatory responses in terms of both expenditure and intake that seem today necessary to consider in order to improve the efficacy of our interventions, as described in the last part of this chapter.

Keywords

Pediatric obesity Exercise Physical activity Physical fitness Energy balance 

References

  1. 1.
    Mark DB, Lauer MS. Exercise capacity: the prognostic variable that doesn’t get enough respect. Circulation. 2003;108(13):1534–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.PubMedCrossRefGoogle Scholar
  3. 3.
    Eisenmann JC. Aerobic fitness, fatness and the metabolic syndrome in children and adolescents. Acta Paediatr. 2007;96(12):1723–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Eisenmann JC, DuBose KD, Donnelly JE. Fatness, fitness, and insulin sensitivity among 7- to 9-year-old children. Obesity. 2007;15(8):2135–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Balke B, Ware R. An experimental study of Air Force personnel. U S Armed Forces Med J. 1959;10:675–88.PubMedGoogle Scholar
  6. 6.
    Bruce RA, Kusumi F, Hosmer D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J. 1973;85(4):546–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Patterson JA, Naughton J, Pietras RJ, Gunnar RM. Treadmill exercise in assessment of the functional capacity of patients with cardiac disease. Am J Cardiol. 1972;30(7):757–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Noonan V, Dean E. Submaximal exercise testing: clinical application and interpretation. Phys Ther. 2000;80(8):782–807.PubMedGoogle Scholar
  9. 9.
    Rowland T, Bhargava R, Parslow D, Heptulla RA. Cardiac response to progressive cycle exercise in moderately obese adolescent females. J Adolesc Health. 2003;32(6):422–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Bitar A, Vermorel M, Fellmann N, Coudert J. Twenty-four-hour energy expenditure and its components in prepubertal children as determined by whole-body indirect calorimetry and compared with young adults. Am J Clin Nutr. 1995;62(2):308–15.PubMedCrossRefGoogle Scholar
  11. 11.
    Watanabe K, Nakadomo F, Maeda K. Relationship between body composition and cardiorespiratory fitness in Japanese junior high school boys and girls. Ann Physiol Anthropol. 1994;13(4):167–74.PubMedCrossRefGoogle Scholar
  12. 12.
    Lorenzo S, Babb TG. Quantification of cardiorespiratory fitness in healthy nonobese and obese men and women. Chest. 2012;141(4):1031–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Goran M, Fields DA, Hunter GR, Herd SL, Weinsier RL. Total body fat does not influence maximal aerobic capacity. Int J Obes Relat Metab Disord. 2000;24(7):841–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Hansen D, Marinus N, Remans M, Courtois I, Cools F, Calsius J, et al. Exercise tolerance in obese vs. lean adolescents: a systematic review and meta-analysis. Obes Rev. 2014;15(11):894–904.PubMedCrossRefGoogle Scholar
  15. 15.
    Belanger K, Breithaupt P, Ferraro ZM, Barrowman N, Rutherford J, Hadjiyannakis S, et al. Do obese children perceive submaximal and maximal exertion differently? Clin Med Insights Pediatr. 2013;7:35–40.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Marinov B, Kostianev S, Turnovska T. Ventilatory efficiency and rate of perceived exertion in obese and non-obese children performing standardized exercise. Clin Physiol Funct Imaging. 2002;22(4):254–60.PubMedCrossRefGoogle Scholar
  17. 17.
    Wagner PD. New ideas on limitations to VO2max. Exerc Sport Sci Rev. 2000;28(1):10–4.PubMedGoogle Scholar
  18. 18.
    Thivel D, Isacco L, O’Malley G, Duche P. Pediatric obesity and perceived exertion: difference between weight-bearing and non-weight-bearing exercises performed at different intensities. J Sports Sci. 2016;34(5):389–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Vella CA, Ontiveros D, Zubia RY. Cardiac function and arteriovenous oxygen difference during exercise in obese adults. Eur J Appl Physiol. 2011;111(6):915–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Fleischman A, Kron M, Systrom DM, Hrovat M, Grinspoon SK. Mitochondrial function and insulin resistance in overweight and normal-weight children. J Clin Endocrinol Metab. 2009;94(12):4923–30.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Slattery MJ, Bredella MA, Thakur H, Torriani M, Misra M. Insulin resistance and impaired mitochondrial function in obese adolescent girls. Metab Syndr Relat Disord. 2014;12(1):56–61.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Schuster I, Karpoff L, Perez-Martin A, Oudot C, Startun A, Rubini M, et al. Cardiac function during exercise in obese prepubertal boys: effect of degree of obesity. Obesity. 2009;17(10):1878–83.PubMedCrossRefGoogle Scholar
  23. 23.
    Labombarda F, Zangl E, Dugue AE, Bougle D, Pellissier A, Ribault V, et al. Alterations of left ventricular myocardial strain in obese children. Eur Heart J Cardiovasc Imaging. 2013;14(7):668–76.PubMedCrossRefGoogle Scholar
  24. 24.
    Ingul CB, Tjonna AE, Stolen TO, Stoylen A, Wisloff U. Impaired cardiac function among obese adolescents: effect of aerobic interval training. Arch Pediatr Adolesc Med. 2010;164(9):852–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Bosco C, Rusko H, Hirvonen J. The effect of extra-load conditioning on muscle performance in athletes. Med Sci Sports Exerc. 1986;18(4):415–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Garcia-Vicencio S, Coudeyre E, Kluka V, Cardenoux C, Jegu AG, Fourot AV, et al. The bigger, the stronger? Insights from muscle architecture and nervous characteristics in obese adolescent girls. Int J Obes (Lond). 2016;40(2):245–51.CrossRefGoogle Scholar
  27. 27.
    Blimkie CJ, Ebbesen B, MacDougall D, Bar-Or O, Sale D. Voluntary and electrically evoked strength characteristics of obese and nonobese preadolescent boys. Hum Biol. 1989;61(4):515–32.PubMedGoogle Scholar
  28. 28.
    Garcia-Vicencio S, Martin V, Kluka V, Cardenoux C, Jegu AG, Fourot AV, et al. Obesity-related differences in neuromuscular fatigue in adolescent girls. Eur J Appl Physiol. 2015;115(11):2421–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Maffiuletti NA, Jubeau M, Agosti F, De Col A, Sartorio A. Quadriceps muscle function characteristics in severely obese and nonobese adolescents. Eur J Appl Physiol. 2008;103(4):481–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Abdelmoula A, Martin V, Bouchant A, Walrand S, Lavet C, Taillardat M, et al. Knee extension strength in obese and nonobese male adolescents. Appl Physiol Nutr Metab. 2012;37(2):269–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Blimkie CJ, Sale DG, Bar-Or O. Voluntary strength, evoked twitch contractile properties and motor unit activation of knee extensors in obese and non-obese adolescent males. Eur J Appl Physiol Occup Physiol. 1990;61(3–4):313–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Lazzer S, Pozzo R, Rejc E, Antonutto G, Francescato MP. Maximal explosive muscle power in obese and non-obese prepubertal children. Clin Physiol Funct Imaging. 2009;29(3):224–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Aucouturier J, Lazaar N, Dore E, Meyer M, Ratel S, Duche P. Cycling peak power in obese and lean 6- to 8-year-old girls and boys. Appl Physiol Nutr Metab. 2007;32(3):367–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Duche P, Ducher G, Lazzer S, Dore E, Tailhardat M, Bedu M. Peak power in obese and nonobese adolescents: effects of gender and braking force. Med Sci Sports Exerc. 2002;34(12):2072–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Zurlo F, Ferraro RT, Fontvielle AM, Rising R, Bogardus C, Ravussin E. Spontaneous physical activity and obesity: cross-sectional and longitudinal studies in Pima Indians. Am J Physiol. 1992;263(2 Pt 1):E296–300.PubMedGoogle Scholar
  36. 36.
    Maffeis C, Tato L. What role do physical activity and sedentary life style play in development and maintenance of excess pounds in the child? Arch Pediatr. 1998;5(11):1191–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Lightfoot JT. Current understanding of the genetic basis for physical activity. J Nutr. 2011;141(3):526–30.PubMedCrossRefGoogle Scholar
  38. 38.
    Stubbe JH, Boomsma DI, Vink JM, Cornes BK, Martin NG, Skytthe A, et al. Genetic influences on exercise participation in 37,051 twin pairs from seven countries. PLoS One. 2006;1:e22.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ruiz JR, Labayen I, Ortega FB, Legry V, Moreno LA, Dallongeville J, et al. Attenuation of the effect of the FTO rs9939609 polymorphism on total and central body fat by physical activity in adolescents: the HELENA study. Arch Pediatr Adolesc Med. 2010;164(4):328–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Schutz Y, Weinsier RL, Hunter GR. Assessment of free-living physical activity in humans: an overview of currently available and proposed new measures. Obes Res. 2001;9(6):368–79.PubMedCrossRefGoogle Scholar
  41. 41.
    McMurray RG, Ward DS, Elder JP, Lytle LA, Strikmiller PK, Baggett CD, et al. Do overweight girls overreport physical activity? Am J Health Behav. 2008;32(5):538–46.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Steele RM, van Sluijs EM, Cassidy A, Griffin SJ, Ekelund U. Targeting sedentary time or moderate- and vigorous-intensity activity: independent relations with adiposity in a population-based sample of 10-y-old British children. Am J Clin Nutr. 2009;90(5):1185–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Maturo CC, Cunningham SA. Influence of friends on children’s physical activity: a review. Am J Public Health. 2013;103(7):e23–38.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Marks J, de la Haye K, Barnett LM, Allender S. Friendship network characteristics are associated with physical activity and sedentary behavior in early adolescence. PLoS One. 2015;10(12):e0145344.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Mendonca G, Cheng LA, Melo EN, de Farias Junior JC. Physical activity and social support in adolescents: a systematic review. Health Educ Res. 2014;29(5):822–39.PubMedCrossRefGoogle Scholar
  46. 46.
    Sawka KJ, McCormack GR, Nettel-Aguirre A, Hawe P, Doyle-Baker PK. Friendship networks and physical activity and sedentary behavior among youth: a systematized review. Int J Behav Nutr Phys Act. 2013;10(1):130.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Brockman R, Fox KR, Fox KR. Children’s active play: self-reported motivators, barriers and facilitators. BMC Public Health. 2011;11:461.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Harrison S, Rowlinson M, Hill AJ. “No fat friend of mine”: young children’s responses to overweight and disability. Body Image. 2016;18:65–73.PubMedCrossRefGoogle Scholar
  49. 49.
    van Geel M, Vedder P, Tanilon J. Are overweight and obese youths more often bullied by their peers? A meta-analysis on the correlation between weight status and bullying. Int J Obes (Lond). 2014;38(10):1263–7.CrossRefGoogle Scholar
  50. 50.
    Gray WN, Janicke DM, Ingerski LM, Silverstein JH, Silverstein JH. The impact of peer victimization, parent distress and child depression on barrier formation and physical activity in overweight youth. J Dev Behav Pediatr. 2008;29(1):26–33.PubMedGoogle Scholar
  51. 51.
    van Stralen MM, Yildirim M, te Velde SJ, Brug J, Fau BJ, van Mechelen W, Chinapaw MJM, Chinapaw MJ. What works in school-based energy balance behaviour interventions and what does not? A systematic review of mediating mechanisms. Int J Obes (Lond). 2011;35(10):1251–65.CrossRefGoogle Scholar
  52. 52.
    Lubans DR, Foster C, Biddle SJH, Biddle SJ. A review of mediators of behavior in interventions to promote physical activity among children and adolescents. Prev Med. 2008;47(5):463–70.PubMedCrossRefGoogle Scholar
  53. 53.
    Thivel D, O’Malley G. Physical activity and play in children who are obese. In: Frelut ML, editor. The ECOG’s eBook on child and adolescent obesity. Bruxelles, Belgium: European Child Obesity Group; 2015.Google Scholar
  54. 54.
    Okely AD SJ, Vella SA, Cliff D, Timperio A, Tremblay M, Trost SG, Shilton T, Hinkley T, Ridgers N, Phillipson L, Hesketh K, Parrish A-M, Janssen X, Brown M, Emmel J, Marino N. A systematic review to update the Australian physical activity guidelines for children and young people. Australian Government. Department of Health. 2012.Google Scholar
  55. 55.
    Bellows LL, Davies PL, Anderson J, Kennedy C, et al. Am J Occup Ther. 2013;67(1):28–36.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Cliff DP, Okely AD, Morgan PJ, Jones RA, Steele JR, Baur LA. Proficiency deficiency: mastery of fundamental movement skills and skill components in overweight and obese children. Obesity. 2012;20(5):1024–33.PubMedCrossRefGoogle Scholar
  57. 57.
    Balas-Nakash M, Benitez-Arciniega A, Perichart-Perera O, Valdes-Ramos R, Vadillo-Ortega F. The effect of exercise on cardiovascular risk markers in Mexican school-aged children: comparison between two structured group routines. Salud Publica Mex. 2010;52(5):398–405.PubMedCrossRefGoogle Scholar
  58. 58.
    Kelley GA, Kelley KS. Effects of aerobic exercise on non-high-density lipoprotein cholesterol in children and adolescents: a meta-analysis of randomized controlled trials. Prog Cardiovasc Nurs. 2008;23(3):128–32.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Daniels SR, Arnett DK, Eckel RH, Gidding SS, Hayman LL, Kumanyika S, Robinson TN, et al. Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment. Circulation. 2005;111(15):1999–2012.PubMedCrossRefGoogle Scholar
  60. 60.
    Lazzer S, Busti C, Agosti F, De Col A, Pozzo R, Sartorio A. Optimizing fat oxidation through exercise in severely obese Caucasian adolescents. Clin Endocrinol (Oxf). 2007;67(4):582–8.Google Scholar
  61. 61.
    Ben Ounis O, Elloumi M, Zouhal H, Makni E, Lac G, Tabka Z, Amri M, et al. Effect of an individualized physical training program on resting cortisol and growth hormone levels and fat oxidation during exercise in obese children. Ann Endocrinol (Paris). 2011;72(1):34–41.CrossRefGoogle Scholar
  62. 62.
    Brandou F, Dumortier M, Garandeau P, Mercier J, Brun JF. Effects of a two-month rehabilitation program on substrate utilization during exercise in obese adolescents. Diabetes Metab. 2003;29(1):20–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Thivel D, O’Malley G. Pediatric obesity: is there room for active video games in prevention or management? Pediatr Phys Ther. 2016;28(4):368–70.PubMedCrossRefGoogle Scholar
  64. 64.
    Faigenbaum AD, Westcott W, Loud RL, Long C. The effects of different resistance training protocols on muscular strength and endurance development in children. Pediatrics. 1999;104(1):e5.PubMedCrossRefGoogle Scholar
  65. 65.
    Thivel D, Ring-Dimitriou S, Weghuber D, Frelut ML, O’Malley G. Muscle strength and fitness in pediatric obesity: a systematic review from the European Childhood Obesity Group. Obes Facts. 2016;9(1):52–63.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Sothern MS, Loftin J, Udall JN, Suskind RM, Ewing TL, Tang SC, Blecker U, et al. Safety, feasibility, and efficacy of a resistance training program in preadolescent obese children. Am J Med Sci. 2000;319(6):370–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Sothern MS, Loftin J, Udall JN, Suskind RM, Ewing TL, Tang SC, Blecker U, et al. Inclusion of resistance exercise in a multidisciplinary outpatient treatment program for preadolescent obese children. South Med J. 1999;92(6):585–92.PubMedCrossRefGoogle Scholar
  68. 68.
    Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001;139(4):509–15.PubMedCrossRefGoogle Scholar
  69. 69.
    Goulding A, Taylor RW, Jones IE, McAuley KA, Manning PJ, Williams SM. Overweight and obese children have low bone mass and area for their weight. Int J Obes Relat Metab Disord. 2000;24(5):627–32.PubMedCrossRefGoogle Scholar
  70. 70.
    Nogueira RC, Weeks B, Beck BR. Exercise to improve pediatric bone and fat: a systematic review and meta-analysis. Med Sci Sports Exerc. 2014;46(3):610–21.PubMedCrossRefGoogle Scholar
  71. 71.
    Corte de Araujo AC, Roschel H, Picanco AR, do Prado DM, Villares SM, de Sa Pinto AL, et al. Similar health benefits of endurance and high-intensity interval training in obese children. PLoS One. 2012;7(8):e42747.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Garcia-Hermoso A, Saavedra JM, Escalante Y. Effects of exercise on resting blood pressure in obese children: a meta-analysis of randomized controlled trials. Obes Rev. 2013;14(11):919–28.PubMedCrossRefGoogle Scholar
  73. 73.
    Petty KH, Davis CL, Tkacz J, Young-Hyman D, Waller JL. Exercise effects on depressive symptoms and self-worth in overweight children: a randomized controlled trial. J Pediatr Psychol. 2009;34(9):929–39.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Tkacz J, Young-Hyman D, Boyle CA, Davis CL. Aerobic exercise program reduces anger expression among overweight children. Pediatr Exerc Sci. 2008;20(4):390–401.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Fogelholm M, Kukkonen-Harjula K. Does physical activity prevent weight gain--a systematic review. Obes Rev. 2000;1(2):95–111.PubMedCrossRefGoogle Scholar
  76. 76.
    Saris WH, Blair SN, van Baak MA, Eaton SB, Davies PS, Di Pietro L, et al. How much physical activity is enough to prevent unhealthy weight gain? Outcome of the IASO 1st stock conference and consensus statement. Obes Rev. 2003;4(2):101–14.PubMedCrossRefGoogle Scholar
  77. 77.
    Chaput JP, Sharma AM. Is physical activity in weight management more about ‘calories in’ than ‘calories out’? Br J Nutr. 2011;106(11):1768–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Thivel D, Saunders TJ, Chaput JP. Physical activity in children and youth may have greater impact on energy intake than energy expenditure. J Nutr Educ Behav. 2013;45(1):e1.PubMedCrossRefGoogle Scholar
  79. 79.
    Thivel D, Duche P, Morio B. Energy balance in youth: an ‘inter-dynamic’ concept? Br J Nutr. 2013;109(3):581–2.PubMedCrossRefGoogle Scholar
  80. 80.
    Bilski J, Teleglow A, Zahradnik-Bilska J, Dembinski A, Warzecha Z. Effects of exercise on appetite and food intake regulation. Med Sport. 2009;13:82–94.CrossRefGoogle Scholar
  81. 81.
    Moore MS, Dodd CJ, Welsman JR, Armstrong N. Short-term appetite and energy intake following imposed exercise in 9- to 10-year-old girls. Appetite. 2004;43(2):127–34.PubMedCrossRefGoogle Scholar
  82. 82.
    Bozinovski NC, Bellissimo N, Thomas SG, Pencharz PB, Goode RC, Anderson GH. The effect of duration of exercise at the ventilation threshold on subjective appetite and short-term food intake in 9 to 14 year old boys and girls. Int J Behav Nutr Phys Act. 2009;6:66.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Nemet D, Arieli R, Meckel Y, Eliakim A. Immediate post-exercise energy intake and macronutrient preferences in normal weight and overweight pre-pubertal children. Int J Pediatr Obes. 2010;5(3):221–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Thivel D, Isacco L, Rousset S, Boirie Y, Morio B, Duché P. Intensive exercise: a remedy for childhood obesity? Physiol Behav. 2011;102(2):132–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Thivel D, Isacco L, Montaurier C, Boirie Y, Duche P, Morio B. The 24-h energy intake of obese adolescents is spontaneously reduced after intensive exercise: a randomized controlled trial in calorimetric chambers. PLoS One. 2012;7(1):e29840.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Thivel D, Metz L, Julien A, Morio B, Duche P. Obese but not lean adolescents spontaneously decrease energy intake after intensive exercise. Physiol Behav. 2014;123:41–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Thivel D, Rumbold PL, King NA, Pereira B, Blundell JE, Mathieu ME. Acute post-exercise energy and macronutrient intake in lean and obese youth: a systematic review and meta-analysis. Int J Obes (Lond). 2016;40(10):1469–79.CrossRefGoogle Scholar
  88. 88.
    Stensel D. Exercise, appetite and appetite-regulating hormones: implications for food intake and weight control. Ann Nutr Metab. 2010;57(Suppl 2):36–42.PubMedCrossRefGoogle Scholar
  89. 89.
    Ueda SY, Yoshikawa T, Katsura Y, Usui T, Fujimoto S. Comparable effects of moderate intensity exercise on changes in anorectic gut hormone levels and energy intake to high intensity exercise. J Endocrinol. 2009;203(3):357–64.PubMedCrossRefGoogle Scholar
  90. 90.
    Ueda SY, Yoshikawa T, Katsura Y, Usui T, Nakao H, Fujimoto S. Changes in gut hormone levels and negative energy balance during aerobic exercise in obese young males. J Endocrinol. 2009;201(1):151–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Sauseng W, Nagel B, Gamillscheg A, Aigner R, Borkenstein M, Zotter H. Acylated ghrelin increases after controlled short-time exercise in school-aged children. Scand J Med Sci Sports. 2011;21(6):e100–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Prado WL, Balagopal PB, Lofrano-Prado MC, Oyama LM, Tenorio TR, Botero JP, et al. Effect of aerobic exercise on hunger feelings and satiety regulating hormones in obese teenage girls. Pediatr Exerc Sci. 2015;26(4):463–9.CrossRefGoogle Scholar
  93. 93.
    Blundell JE, Gibbons C, Caudwell P, Finlayson G, Hopkins M. Appetite control and energy balance: impact of exercise. Obes Rev. 2015;16(Suppl 1):67–76.PubMedCrossRefGoogle Scholar
  94. 94.
    Evero N, Hackett LC, Clark RD, Phelan S, Hagobian TA. Aerobic exercise reduces neuronal responses in food reward brain regions. J Appl Physiol (1985). 2012;112(9):1612–9.CrossRefGoogle Scholar
  95. 95.
    Hanlon B, Larson MJ, Bailey BW, LeCheminant JD. Neural response to pictures of food after exercise in normal-weight and obese women. Med Sci Sports Exerc. 2012;44(10):1864–70.PubMedCrossRefGoogle Scholar
  96. 96.
    Fearnbach SN, Silvert L, Keller KL, Genin PM, Morio B, Pereira B, et al. Reduced neural response to food cues following exercise is accompanied by decreased energy intake in obese adolescents. Int J Obes (Lond). 2016;40(1):77–83.CrossRefGoogle Scholar
  97. 97.
    King NA, Hester J, Gately PJ. The effect of a medium-term activity- and diet-induced energy deficit on subjective appetite sensations in obese children. Int J Obes (Lond). 2007;31(2):334–9.CrossRefGoogle Scholar
  98. 98.
    Gueugnon C, Mougin F, Nguyen NU, Bouhaddi M, Nicolet-Guenat M, Dumoulin G. Ghrelin and PYY levels in adolescents with severe obesity: effects of weight loss induced by long-term exercise training and modified food habits. Eur J Appl Physiol. 2012;112(5):1797–805.PubMedCrossRefGoogle Scholar
  99. 99.
    Jones TE, Basilio JL, Brophy PM, McCammon MR, Hickner RC. Long-term exercise training in overweight adolescents improves plasma peptide YY and resistin. Obesity (Silver Spring). 2009;17(6):1189–95.Google Scholar
  100. 100.
    Thivel D, Chaput JP, Adamo KB, Goldfield GS. Is energy intake altered by a 10-week aerobic exercise intervention in obese adolescents? Physiol Behav. 2014;135:130–4.PubMedCrossRefGoogle Scholar
  101. 101.
    Carnier J, de Mello MT, Ackel DC, Corgosinho FC, Campos RM, Sanches Pde L, et al. Aerobic training (AT) is more effective than aerobic plus resistance training (AT+RT) to improve anorexigenic/orexigenic factors in obese adolescents. Appetite. 2013;69:168–73.PubMedCrossRefGoogle Scholar
  102. 102.
    Prado WL, Lofrano-Prado MC, Oyama LM, Cardel M, Gomes PP, Andrade ML, et al. Effect of a 12-week low vs. high intensity aerobic exercise training on appetite-regulating hormones in obese adolescents: a randomized exercise intervention study. Pediatr Exerc Sci. 2015;27(4):510–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Schwartz C, King NA, Perreira B, Blundell JE, Thivel D. A systematic review and meta-analysis of energy and macronutrient intake responses to physical activity interventions in children and adolescents with obesity. Pediatr Obes. 2017;12(3):179–94.PubMedCrossRefGoogle Scholar
  104. 104.
    Schoeller DA, Thomas D, Archer E, Heymsfield SB, Blair SN, Goran MI, et al. Self-report-based estimates of energy intake offer an inadequate basis for scientific conclusions. Am J Clin Nutr. 2013;97(6):1413–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Rowland TW. The biological basis of physical activity. Med Sci Sports Exerc. 1998;30(3):392–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Fremeaux AE, Mallam KM, Metcalf BS, Hosking J, Voss LD, Wilkin TJ. The impact of school-time activity on total physical activity: the activitystat hypothesis (EarlyBird 46). Int J Obes (Lond). 2012;35(10):1277–83.CrossRefGoogle Scholar
  107. 107.
    Mallam KM, Metcalf BS, Kirkby J, Voss LD, Wilkin TJ. Contribution of timetabled physical education to total physical activity in primary school children: cross sectional study. BMJ. 2003;327(7415):592–3.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Marcus C, Nyberg G, Nordenfelt A, Karpmyr M, Kowalski J, Ekelund U. A 4-year, cluster-randomized, controlled childhood obesity prevention study: STOPP. Int J Obes (Lond). 2009;33(4):408–17.CrossRefGoogle Scholar
  109. 109.
    Kriemler S, Zahner L, Schindler C, Meyer U, Hartmann T, Hebestreit H, et al. Effect of school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: cluster randomised controlled trial. BMJ. 2010;340:c785.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Wilkin T. Reply to Wardle J et al. School-based physical activity and changes in adiposity. Int J Obes (Lond). 2008;32(3):577. author reply 8CrossRefGoogle Scholar
  111. 111.
    Baggett CD, Stevens J, Catellier DJ, Evenson KR, McMurray RG, He K, et al. Compensation or displacement of physical activity in middle-school girls: the trial of activity for adolescent girls. Int J Obes (Lond). 2010;34(7):1193–9.CrossRefGoogle Scholar
  112. 112.
    Dale D, Corbin CB, Dale KS. Restricting opportunities to be active during school time: do children compensate by increasing physical activity levels after school? Res Q Exerc Sport. 2000;71(3):240–8.PubMedCrossRefGoogle Scholar
  113. 113.
    Goodman A, Mackett RL, Paskins J. Activity compensation and activity synergy in British 8-13 year olds. Prev Med. 2011;53(4–5):293–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Eisenmann JC, Wickel EE. The biological basis of physical activity in children: revisited. Pediatr Exerc Sci. 2009;21(3):257–72.PubMedCrossRefGoogle Scholar
  115. 115.
    Rowlands AV. Methodological approaches for investigating the biological basis for physical activity in children. Pediatr Exerc Sci. 2009;21(3):273–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Wang X, Nicklas BJ. Acute impact of moderate-intensity and vigorous-intensity exercise bouts on daily physical activity energy expenditure in postmenopausal women. J Obes. 2011;2011. pii: 342431.Google Scholar
  117. 117.
    Kriemler S, Hebestreit H, Mikami S, Bar-Or T, Ayub BV, Bar-Or O. Impact of a single exercise bout on energy expenditure and spontaneous physical activity of obese boys. Pediatr Res. 1999;46(1):40–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Thivel D, Aucouturier J, Metz L, Morio B, Duche P. Is there spontaneous energy expenditure compensation in response to intensive exercise in obese youth? Pediatr Obes. 2014;9(2):147–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • David Thivel
    • 1
    Email author
  • Grace O’Malley
    • 2
  • Julien Aucouturier
    • 3
  1. 1.AME2P Laboratory, Metabolic Adaptations to Exercise under Physiological and Pathological ConditionsClermont Auvergne UniversityAubièreFrance
  2. 2.Department of PhysiotherapyChildren’s University HospitalDublinIreland
  3. 3.Department of Sport SciencesLille 2 UniversityRonchinFrance

Personalised recommendations