Nonchaos-Mediated Mixed-Mode Oscillations in a Prey-Predator Model with Predator Dormancy

  • Joana G. Freire
  • Marcia R. Gallas
  • Jason A. C. Gallas
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Chaos-mediated mixed-mode oscillations were recently detected among complex oscillations supported by a prey-predator model including dormancy, a strategy to avoid extinction. Here we show that, as the carrying capacity grows, there are surprisingly wide phases of nonchaos-mediated mixed-mode oscillations that occur before the onset of chaos in the system. Nonchaos-mediated cascades display spike-adding sequences while chaos-mediated cascades show spike-doubling. In addition, we find a host of exotic periodic phases embedded in a region of control parameters dominated by chaotic oscillations of the prey-predator populations. We describe these complicated phases, show how they are interconnected, and how their complexity unfolds as control parameters change. The new nonchaos-mediated phases are stable and large, even at low carrying capacity.

Notes

Acknowledgements

JGF was supported by a postdoctoral fellowship (SFRH/BPD/101760/2014), from the FCT, Portugal. JACG was supported by CNPq, Brazil. All phase diagrams were computed on the CESUP-UFRGS Supercomputing Center located in Porto Alegre, Brazil.

References

  1. 1.
    Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 47, 209–223 (1963)CrossRefGoogle Scholar
  2. 2.
    Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971)CrossRefADSGoogle Scholar
  3. 3.
    Kuwamura, M., Nakazawa, T., Ogawa, T.: A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment. J. Math. Biol. 58, 459–479 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Jensen, C.X.J., Ginzburg, L.R.: Paradox or theoretical failures? The jury is still out. Ecol. Model. 188, 314 (2005)CrossRefGoogle Scholar
  5. 5.
    Kuwamura, M., Chiba, H.: Mixed-mode oscillations and chaos in a prey-pradator system with dormancy of predators. Chaos 19, 043121 (2009)MathSciNetCrossRefMATHADSGoogle Scholar
  6. 6.
    Alekseev, V., Lampert, W.: Maternal control of resting-egg production in Dapnia. Nature 414, 899901 (2001)CrossRefGoogle Scholar
  7. 7.
    Gyllström, M., Hansson, K.-A.: Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci. 66, 274295 (2004)CrossRefGoogle Scholar
  8. 8.
    Hairston Jr., N.G., Hansen, A.M., Schaffner, W.R.: The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshw. Biol. 45, 133145 (2000)CrossRefGoogle Scholar
  9. 9.
    Ricci, C.: Dormancy patterns in rorifers. Hydrobiologia 446, 111 (2001)Google Scholar
  10. 10.
    McCauley, E., Nisbet, R.M., Murdoch, W.W., de Roos, A.M., Gurney, W.S.C.: Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature 402, 653656 (1999)Google Scholar
  11. 11.
    Hauser, M.J.B., Gallas, J.A.C.: Nonchaos-mediated mixed-mode oscillations in an enzyme reaction system. J. Phys. Chem. Lett. 5, 4187–4193 (2014)CrossRefGoogle Scholar
  12. 12.
    Gallas, M.R., Gallas, J.A.C.: Nested arithmetic progressions of oscillatory phases in Olsen’s enzyme reaction model. Chaos 25, 064603 (2015)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Freire, J.G., Gallas, M.R., Gallas, J.A.C.: Chaos-free oscillations. Europhys. Lett. 118, 38003 (2017)CrossRefADSGoogle Scholar
  14. 14.
    Freire, J.G., Gallas, M.R., Gallas, J.A.C.: Stability mosaics in a forced Brusselator: auto-organization of oscillations in control parameter space. Eur. Phys. J. Spec. Top. 226, 1987–1995 (2017)CrossRefGoogle Scholar
  15. 15.
    Rao, X., Chu, Y., Lu-Xu, Y.Chang, Zhang, J.: Fractal structures in centrifugal flywheel governor system. Commun. Nonlinear Sci. Numer. Simul. 50, 330339 (2017)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Freire, J.G., Pöschel, T., Gallas, J.A.C.: Stern-Brocot trees in spiking and bursting of sigmoidal maps. Europhys. Lett. 100, 48002 (2012)CrossRefADSGoogle Scholar
  17. 17.
    Freire, J.G., Field, R.J., Gallas, J.A.C.: Relative abundance and structure of chaotic behavior: the nonpolynomial Belousov Zhabotinsky reaction kinetics. J. Chem. Phys. 131, 044105 (2009)CrossRefADSGoogle Scholar
  18. 18.
    Gallas, J.A.C.: Spiking systematics in some CO\(_2\) laser models. Adv. Atom. Mol. Opt. Phys. 65, 127–191 (2016)CrossRefADSGoogle Scholar
  19. 19.
    Kuwamura, M.: Turing instabilities in prey-predator systems with dormancy of predators. J. Math. Biol. 71, 125–149 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Vitolo, R., Glendinning, P., Gallas, J.A.C.: Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows. Phys. Rev. E 84, 016216 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Joana G. Freire
    • 1
    • 2
    • 3
  • Marcia R. Gallas
    • 1
    • 2
    • 4
  • Jason A. C. Gallas
    • 1
    • 2
    • 4
  1. 1.Instituto de Altos Estudos da ParaíbaJoão PessoaBrazil
  2. 2.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil
  3. 3.Faculdade de Ciências, Instituto Dom LuizUniversidade de LisboaLisbonPortugal
  4. 4.Complexity Sciences CenterSurfsideUSA

Personalised recommendations