Advertisement

Nonchaos-Mediated Mixed-Mode Oscillations in a Prey-Predator Model with Predator Dormancy

  • Joana G. Freire
  • Marcia R. Gallas
  • Jason A. C. GallasEmail author
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Chaos-mediated mixed-mode oscillations were recently detected among complex oscillations supported by a prey-predator model including dormancy, a strategy to avoid extinction. Here we show that, as the carrying capacity grows, there are surprisingly wide phases of nonchaos-mediated mixed-mode oscillations that occur before the onset of chaos in the system. Nonchaos-mediated cascades display spike-adding sequences while chaos-mediated cascades show spike-doubling. In addition, we find a host of exotic periodic phases embedded in a region of control parameters dominated by chaotic oscillations of the prey-predator populations. We describe these complicated phases, show how they are interconnected, and how their complexity unfolds as control parameters change. The new nonchaos-mediated phases are stable and large, even at low carrying capacity.

Notes

Acknowledgements

JGF was supported by a postdoctoral fellowship (SFRH/BPD/101760/2014), from the FCT, Portugal. JACG was supported by CNPq, Brazil. All phase diagrams were computed on the CESUP-UFRGS Supercomputing Center located in Porto Alegre, Brazil.

References

  1. 1.
    Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 47, 209–223 (1963)CrossRefGoogle Scholar
  2. 2.
    Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971)CrossRefADSGoogle Scholar
  3. 3.
    Kuwamura, M., Nakazawa, T., Ogawa, T.: A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment. J. Math. Biol. 58, 459–479 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Jensen, C.X.J., Ginzburg, L.R.: Paradox or theoretical failures? The jury is still out. Ecol. Model. 188, 314 (2005)CrossRefGoogle Scholar
  5. 5.
    Kuwamura, M., Chiba, H.: Mixed-mode oscillations and chaos in a prey-pradator system with dormancy of predators. Chaos 19, 043121 (2009)MathSciNetCrossRefzbMATHADSGoogle Scholar
  6. 6.
    Alekseev, V., Lampert, W.: Maternal control of resting-egg production in Dapnia. Nature 414, 899901 (2001)CrossRefGoogle Scholar
  7. 7.
    Gyllström, M., Hansson, K.-A.: Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat. Sci. 66, 274295 (2004)CrossRefGoogle Scholar
  8. 8.
    Hairston Jr., N.G., Hansen, A.M., Schaffner, W.R.: The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshw. Biol. 45, 133145 (2000)CrossRefGoogle Scholar
  9. 9.
    Ricci, C.: Dormancy patterns in rorifers. Hydrobiologia 446, 111 (2001)Google Scholar
  10. 10.
    McCauley, E., Nisbet, R.M., Murdoch, W.W., de Roos, A.M., Gurney, W.S.C.: Large-amplitude cycles of Daphnia and its algal prey in enriched environments. Nature 402, 653656 (1999)Google Scholar
  11. 11.
    Hauser, M.J.B., Gallas, J.A.C.: Nonchaos-mediated mixed-mode oscillations in an enzyme reaction system. J. Phys. Chem. Lett. 5, 4187–4193 (2014)CrossRefGoogle Scholar
  12. 12.
    Gallas, M.R., Gallas, J.A.C.: Nested arithmetic progressions of oscillatory phases in Olsen’s enzyme reaction model. Chaos 25, 064603 (2015)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Freire, J.G., Gallas, M.R., Gallas, J.A.C.: Chaos-free oscillations. Europhys. Lett. 118, 38003 (2017)CrossRefADSGoogle Scholar
  14. 14.
    Freire, J.G., Gallas, M.R., Gallas, J.A.C.: Stability mosaics in a forced Brusselator: auto-organization of oscillations in control parameter space. Eur. Phys. J. Spec. Top. 226, 1987–1995 (2017)CrossRefGoogle Scholar
  15. 15.
    Rao, X., Chu, Y., Lu-Xu, Y.Chang, Zhang, J.: Fractal structures in centrifugal flywheel governor system. Commun. Nonlinear Sci. Numer. Simul. 50, 330339 (2017)MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Freire, J.G., Pöschel, T., Gallas, J.A.C.: Stern-Brocot trees in spiking and bursting of sigmoidal maps. Europhys. Lett. 100, 48002 (2012)CrossRefADSGoogle Scholar
  17. 17.
    Freire, J.G., Field, R.J., Gallas, J.A.C.: Relative abundance and structure of chaotic behavior: the nonpolynomial Belousov Zhabotinsky reaction kinetics. J. Chem. Phys. 131, 044105 (2009)CrossRefADSGoogle Scholar
  18. 18.
    Gallas, J.A.C.: Spiking systematics in some CO\(_2\) laser models. Adv. Atom. Mol. Opt. Phys. 65, 127–191 (2016)CrossRefADSGoogle Scholar
  19. 19.
    Kuwamura, M.: Turing instabilities in prey-predator systems with dormancy of predators. J. Math. Biol. 71, 125–149 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Vitolo, R., Glendinning, P., Gallas, J.A.C.: Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows. Phys. Rev. E 84, 016216 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Joana G. Freire
    • 1
    • 2
    • 3
  • Marcia R. Gallas
    • 1
    • 2
    • 4
  • Jason A. C. Gallas
    • 1
    • 2
    • 4
    Email author
  1. 1.Instituto de Altos Estudos da ParaíbaJoão PessoaBrazil
  2. 2.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil
  3. 3.Faculdade de Ciências, Instituto Dom LuizUniversidade de LisboaLisbonPortugal
  4. 4.Complexity Sciences CenterSurfsideUSA

Personalised recommendations