Essentials of the Production of Safe and Efficacious State-of-the-Art Polyclonal IgG Concentrates

Chapter

Abstract

Severe noninfectious adverse events (AEs) and transmission of pathogens by plasma-derived protein concentrates from the very beginning of their clinical use were threats for recipients (see Chap.  11 for additional information). “Standard IgG” preparations were the first available for clinical use. They were produced by the cold-ethanol fractionation methods and did not make an exception. Noninfectious severe AEs occurred while infectious AEs were rarely reported. Indeed, prior to the introduction of mass screening for infection markers of plasma donations, inadvertent transmission of HIV to recipients of factor VIII and factor IX concentrates did occur, while IgG concentrates obtained from the same plasma pool did rarely transmit HIV (Morgenthaler 2001). Rare transmissions were restricted to products not exposed to low pH. The very few incidences of HIV and some incidences of HCV transmission by IgG concentrates in the early 1990s together with many cases of coagulation factor concentrates transmitted viral disease clearly demonstrated the need to establish standardized measures to render plasma products pathogen safe. In the second half of the 1990s, authorities shifted regulatory emphasis from a scientific review of the processes to a focus on compliance to current good manufacturing practice (cGMP). The focus on cGMP compliance was applied to all aspects of plasma fractionation and the clinical use of plasma products. Court injunctions and warning letters were the consequences of this paradigm shift by authorities. This in turn resulted in a paradigm shift how the modern plasma industry operates (Steinhardt 1998).

Notes

Acknowledgments

The help of Christoph Kempf, University of Berne, is greatly appreciated, as well as information kindly provided by Roland Hubner, The Federal Public Service (FPS) Health, Food Chain and Environment, Belgium.

Some web sites for additional information:

http://www.cjd.ed.ac.uk

http://www.eurocjd.ed.ac.uk

http://www.who.int/home-page/

http://www.ukhcdo.org/patient-information

http://case.edu/med/pathology/centers/npdpsc

http://www.who.int/medicines/areas/quality_safety/regulation_legislation/ListMRAWebsites.pdf

References

  1. Ball R, Robb M, Anderson SA, Dal PG. The FDA’s sentinel initiative—a comprehensive approach to medical product surveillance. Clin Pharmacol Ther. 2016;99:265–8.CrossRefPubMedGoogle Scholar
  2. Barjas-Castro ML, Angerami RN, Cunha MS, Suzuki A, Nogueira JS, Rocco IM, Maeda AY, Vasami FG, Katz G, Boin IF, Stucchi RS, Resende MR, Esposito DL, de Souza RP, da Fonseca BA, Addas-Carvalho M. Probable transfusion-transmitted Zika virus in Brazil. Transfusion. 2016;56:1684–8.CrossRefPubMedGoogle Scholar
  3. Bertolini J. Chromatographic purification of immunoglobulins. Downstream. 1998;31:21–2.Google Scholar
  4. Blasco-Perrin H, Cintas P, Abravanel F, Gérolami R, D’Alteroche L, Raynal J-N, Alric L, Dupuis E, Prudhomme L, Vaucher E, Couzigou P, Liversain J-M, Buscail L, Bureau C, Vinel J-P, Kamar N, Izopet J, Péron JM. Neurologic disorders in immunocompetent patients with autochthonous acute hepatitis E. Emerg Infect Dis. 2015;21:1928–34.Google Scholar
  5. Blümel J, Musso D, Teitz S, Miyabayashi T, Boller K, Schnierle BS, Baylis SA. Inactivation and removal of Zika virus during manufacture of plasma-derived medicinal products. Transfusion. 2017;57:790–6.CrossRefPubMedGoogle Scholar
  6. Boschetti N, Stucki M, Späth PJ, Kempf C. Virus safety of intravenous immunoglobulin: future challenges. Clin Rev Allergy Immunol. 2005;29:333–44.CrossRefPubMedGoogle Scholar
  7. Bruce ME, Will RG, Ironside JW, McConnell I, Drummond D, Suttie A, McCardle L, Chree A, Hope J, Birkett C, Cousens S, Fraser H, Bostock CJ. Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature. 1997;389:498–501.CrossRefPubMedGoogle Scholar
  8. Cai K, Gröner A, Dichtelmüller HO, Fabbrizzi F, Flechsig E, Gajardo R, von Hoegen I, Jorquera JI, Kempf C, Kreil TR, Lee DC, Moscardini M, Polsler G, Roth NJ. Prion removal capacity of plasma protein manufacturing processes: a data collection from PPTA member companies. Transfusion. 2013;53:1894–905.CrossRefPubMedGoogle Scholar
  9. Cai K, Miller JL, Stenland CJ, Gilligan KJ, Hartwell RC, Terry JC, Evans-Storms RB, Rubenstein R, Petteway SR, Lee DC. Solvent-dependent precipitation of prion protein. Biochim Biophys Acta. 2002;1597:28–35.CrossRefPubMedGoogle Scholar
  10. Cramer M, Frei R, Sebald A, Mazzoletti P, Maeder W. Stability over 36 months of a new liquid 10% polyclonal immunoglobulin product (IgPro10, Privigen©) stabilized with L-proline. Vox Sang. 2009;96:219–25.CrossRefPubMedGoogle Scholar
  11. Crowder LA, Schonberger LB, Dodd RY, Steele WR. Creutzfeldt-Jakob disease lookback study: 21 years of surveillance for transfusion transmission risk. Transfusion. 2017;57(8):1875–8. [Epub ahead of print].CrossRefPubMedGoogle Scholar
  12. D’Aignaux JH, Costagliola D, Maccario J, De Villemeur TB, Brandel JP, Deslys JP, Hauw JJ, Chaussain JL, Agid Y, Dormont D, Alpérovitch A. Incubation period of Creutzfeldt-Jakob disease in human growth hormone recipients in France. Neurology. 1999;53:1197–201.CrossRefGoogle Scholar
  13. Dhainaut F, Guillaumat PO, Dib H, Perret G, Sauger A, De Coupade C, Beaudet M, Elzaabi M, Mouthon L. In vitro and in vivo properties differ among liquid intravenous immunoglobulin preparations. Vox Sang. 2013;104:115–26.CrossRefPubMedCentralPubMedGoogle Scholar
  14. El-Shanawany T, Jolles S, Unsworth DJ, Williams P. A recipient of immunoglobulin from a donor who developed vCJD. Vox Sang. 2009;96:270.CrossRefPubMedGoogle Scholar
  15. EMEA. CPMP Position Statement: Non-remunerated and remunerated donors: Safety and supply of plasma-derived medicinal products. European Agency for the Evaluation of Medical Products EMEA/CPMP/BWP/1818/02; 2002. p. 1–2.Google Scholar
  16. Farcet MR, Lackner C, Antoine G, Rabel PO, Wieser A, Flicker A, Unger U, Modrof J, Kreil TR. Hepatitis E virus and the safety of plasma products: investigations into the reduction capacity of manufacturing processes. Transfusion. 2016;56:383–91.CrossRefPubMedGoogle Scholar
  17. Hewitt PE, Llewelyn CA, Mackenzie J, Will RG. Three reported cases of variant Creutzfeldt-Jakob disease transmission following transfusion of labile blood components. Vox Sang. 2006;91:348.CrossRefPubMedGoogle Scholar
  18. Higuchi M-A, Fukae J, Tsugawa J, Ouma S, Takahashi K, Mishiro S, Tsuboi Y. Dysgeusia in a patient with Guillain-Barre syndrome associated with acute hepatitis E: a case report and literature review. Intern Med. 2015;54:1543–6.CrossRefPubMedGoogle Scholar
  19. Höfferer L, Glauser I, Gaida A, Willimann K, Marques Anuntes A, Siani B, Wymann S, Widmer E, El Menyawi I, Bolli R, Spycher M, Imboden M. Isoagglutinin reduction by a dedicated immunoaffinity chromatography step in the manufacturing process of human immunoglobulin products. Transfusion. 2015;55(Suppl 2):S117–21.CrossRefGoogle Scholar
  20. Jackson GS, Burk-Rafel J, Edgeworth JA, Sicilia A, Abdilahi S, Korteweg J, Mackey J, Thomas C, Wang G, Schott JM, Mummery C, Chinnery PF, Mead S, Collinge J. Population screening for variant Creutzfeldt-Jakob disease using a novel blood test: diagnostic accuracy and feasibility study. JAMA Neurol. 2014;71:421–8.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Kempf C, Stucki M, Boschetti N. Pathogen inactivation and removal procedures used in the production of intravenous immunoglobulins. Biologicals. 2007;35:35–42.CrossRefPubMedGoogle Scholar
  22. Kreil TR, Berting A, Kistner O, Kindermann J. West Nile virus and the safety of plasma derivatives: verification of high safety margins, and the validity of predictions based on model virus data. Transfusion. 2003;43:1023–8.CrossRefPubMedGoogle Scholar
  23. Kühnel D, Müller S, Pichotta A, Radomski KU, Volk A, Schmidt T. Inactivation of Zika virus by solvent/detergent treatment of human plasma and other plasma-derived products and pasteurization of human serum albumin. Transfusion. 2017;57:802–10.CrossRefPubMedGoogle Scholar
  24. Laub R, Baurin S, Timmerman D, Branckaert T, Strengers P. Specific protein content of pools of plasma for fractionation from different sources: impact of frequency of donations. Vox Sang. 2010;99:220–31.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Leydold SM, Farcet MR, Kindermann J, Modrof J, Polsler G, Berting A, Howard MK, Barrett PN, Kreil TR. Chikungunya virus and the safety of plasma products. Transfusion. 2012;52:2122–30.CrossRefPubMedGoogle Scholar
  26. Lopez-Bueno A, Villarreal LP, Almendral JM. Parvovirus variation for disease: a difference with RNA viruses? Curr Top Microbiol Immunol. 2006;299:349–70.PubMedGoogle Scholar
  27. Makarov V, Pettitt BM, Feig M. Solvation and hydration of proteins and nucleic acids: a theoretical view of simulation and experiment. Acc Chem Res. 2002;35:376–84.CrossRefPubMedGoogle Scholar
  28. Mallet V, Sberro-Soussan R, Vallet-Pichard A, Roque-Afonso AM, Pol S. Transmission of hepatitis E virus by plasma exchange: a case report. Ann Intern Med. 2016;164:851–2.CrossRefPubMedGoogle Scholar
  29. Martin M, Trouvin JH. Risk of transmission of Creutzfeldt-Jakob disease via blood and blood products. The French risk-analysis over the last 15 years. Transfus Clin Biol. 2013;20:398–404.CrossRefPubMedGoogle Scholar
  30. Morgenthaler JJ. Securing viral safety for plasma derivatives. Transfus Med Rev. 2001;15:224–33.CrossRefPubMedGoogle Scholar
  31. Motte A, Roquelaure B, Galambrun C, Bernard F, Zandotti C, Colson P. Hepatitis E in three immunocompromized children in southeastern France. J Clin Virol. 2012;53:162–6.CrossRefPubMedGoogle Scholar
  32. Nitschmann H, Kistler P, Lergier W. Vereinfachtes Verfahren zur Gewinnung von humanem Albumin und γ-Globulin aus Blutplasma mittels Alkoholfällung - [Simplified method for isolation of human albimin and γ-globulin from plasma using the ethnol precipitation method]. Helv Chim Acta. 1954;37:866–73.CrossRefGoogle Scholar
  33. Nogueira ML, Estofolete CF, Terzian ACB, Mascarin do Vale EPB, da Silva RCMA, da Silva RF, Ramalho HJ, Fernandes Charpiot IMM, Vasilakis N, Abbud-Filho M. Zika virus infection and solid organ transplantation: a new challenge. Am J Transplant. 2017;17:791–5.CrossRefPubMedGoogle Scholar
  34. Offergeld R, Faensen D, Ritter S, Hamouda O. Human immunodeficiency virus, hepatitis C and hepatitis B infections among blood donors in Germany 2000–2002: risk of virus transmission and the impact of nucleic acid amplification testing. Euro Surveill. 2005;10:8–11.CrossRefPubMedGoogle Scholar
  35. Oncley JL, Melin M, Richert DA, Cameron JW, Gross PM. The separation of the antibodies, isoagglutinins, prothrombin, plasminogen and β1-lipoprotein into subfractions of human plasma. J Am Chem Soc. 1949;71:541–50.CrossRefPubMedGoogle Scholar
  36. Peden AH, Head MW, Ritchie DL, Bell JE, Ironside JW. Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet. 2004;364:527–9.CrossRefPubMedGoogle Scholar
  37. Pérez Torre P, Acebrón F, Monreal E, Viedma GE, Martinez UP, FC E+®v, Alonso CA, Avil+®s O, I, Buis+ín CJ. Guillain-Barré syndrome following acute hepatitis E in a Western European man. Eur J Neurol. 2015;22:291.Google Scholar
  38. Preti RA. Process validation. Cytotherapy. 1999;1:481–3.CrossRefPubMedGoogle Scholar
  39. Rabenau HF, Biesert L, Schmidt T, Bauer G, Cinatl J, Doerr HW. SARS-coronavirus (SARS-CoV) and the safety of a solvent/detergent (S/D) treated immunoglobulin preparation. Biologicals. 2005;33:95–9.CrossRefPubMedGoogle Scholar
  40. Ritchie DL, Gibson SV, Abee CR, Kreil TR, Ironside JW, Brown P. Blood transmission studies of prion infectivity in the squirrel monkey (Saimiri sciureus): the Baxter study. Transfusion. 2016;56:712–21.CrossRefPubMedGoogle Scholar
  41. Scanvion Q, Perez T, Cassim F, Outteryck O, Lanteri A, Hatron PY, Lambert M, Morell-Dubois S. Neuralgic amyotrophy triggered by hepatitis E virus: a particular phenotype. J Neurol. 2017;264:770–80.CrossRefPubMedGoogle Scholar
  42. Shackelton LA, Holmes EC. Phylogenetic evidence for the rapid evolution of human B19 erythrovirus. J Virol. 2006;80:3666–9.CrossRefPubMedCentralPubMedGoogle Scholar
  43. Siani B, Willimann K, Wymann S, Marques AA, Widmer E. Isoagglutinin reduction in human immunoglobulin products by donor screening. Biol Ther. 2014;4:15–26.CrossRefPubMedCentralPubMedGoogle Scholar
  44. Slopecki A, Smith K, Moore S. The value of good manufacturing practice to a blood service in managing the delivery of quality. Vox Sang. 2007;92:187–96.CrossRefPubMedGoogle Scholar
  45. Späth PJ, Granata G, La Marra F, Kuijpers TW, Quinti I. On the dark side of therapies with immunoglobulin concentrates. The adverse events. Front Immunol. 2015;6:11.CrossRefPubMedCentralPubMedGoogle Scholar
  46. Steinbuch M, Audran R. The isolation of IgG from mammalian sera with the aid of caprylic acid. Arch Biochem Biophys. 1969;134:279–84.CrossRefPubMedGoogle Scholar
  47. Steinhardt B. Blood plasma safety. Plasma product risks are low if good manufacturing practices are followed. B-278739. Washington: GAO/HEHS; 1998. p. 1–47. Ref Type: Report.Google Scholar
  48. Stucki M, Moudry R, Kempf C, Omar A, Schlegel A, Lerch PG. Characterisation of a chromatographically produced anti-D immunoglobulin product. J Chromatogr B Biomed Sci Appl. 1997;700:241–8.CrossRefPubMedGoogle Scholar
  49. Tamura A, Shimizu YK, Tanaka T, Kuroda K, Arakawa Y, Takahashi K, Mishiro S, Shimizu K, Moriyama M. Persistent infection of hepatitis E virus transmitted by blood transfusion in a patient with T-cell lymphoma. Hepatol Res. 2007;37:113–20.CrossRefPubMedGoogle Scholar
  50. Trejo SR, Hotta JA, Lebing W, Stenland C, Storms RE, Lee DC, Li H, Petteway S, Remington KM. Evaluation of virus and prion reduction in a new intravenous immunoglobulin manufacturing process. Vox Sang. 2003;84:176–87.CrossRefPubMedGoogle Scholar
  51. Urwin P, Thanigaikumar K, Ironside JW, Molesworth A, Knight RS, Hewitt PE, Llewelyn C, Mackenzie J, Will RG. Sporadic Creutzfeldt-Jakob disease in 2 plasma product recipients, United Kingdom. Emerg Infect Dis. 2017;23:893.CrossRefPubMedCentralGoogle Scholar
  52. Urwin PJ, Mackenzie JM, Llewelyn CA, Will RG, Hewitt PE. Creutzfeldt-Jakob disease and blood transfusion: updated results of the UK Transfusion Medicine Epidemiology Review Study. Vox Sang. 2016;110:310–6.CrossRefPubMedGoogle Scholar
  53. Venturi G, Zammarchi L, Fortuna C, Remoli ME, Benedetti E, Fiorentini C, Trotta M, Rizzo C, Mantella A, Rezza G, Bartoloni A. An autochthonous case of zika due to possible sexual transmission, Florence, Italy, 2014. Eurosurveillance. 2016;21:1–4.Google Scholar
  54. Wilesmith JW, Ryan JB, Atkinson MJ. Bovine spongiform encephalopathy: epidemiological studies on the origin. Vet Rec. 1991;128:199–203.CrossRefPubMedGoogle Scholar
  55. Yang H, Huang Y, Gregori L, Asher DM, Bui T, Forshee RA, Anderson SA. Geographic exposure risk of variant Creutzfeldt-Jakob disease in US blood donors: a risk-ranking model to evaluate alternative donor-deferral policies. Transfusion. 2017;57:924–32.CrossRefPubMedGoogle Scholar
  56. Yunoki M, Urayama T, Yamamoto I, Abe S, Ikuta K. Heat sensitivity of a SARS-associated coronavirus introduced into plasma products. Vox Sang. 2004;87:302–3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Pharmacology, University of BernBernSwitzerland

Personalised recommendations