Advertisement

TOM: A Model-Based GUI Testing Framework

  • Miguel Pinto
  • Marcelo Gonçalves
  • Paolo Masci
  • José Creissac Campos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10487)

Abstract

Applying model-based testing to interactive systems enables the systematic testing of the system by automatically simulating user actions on the user interface. It reduces the cost of (expensive) user testing by identifying implementations errors without the involvement of human users, but raises a number of specific challenges, such as how to achieve good coverage of the actual use of the system during the testing process. This paper describes TOM, a model-based testing framework that uses a combination of tools and mutation testing techniques to maximize testing of user interface behaviors.

Keywords

Model-based testing User interfaces Tool support 

Notes

Acknowledgements

Work financed by the ERDF (European Regional Development Fund) through the COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-016826.

References

  1. 1.
    Amalfitano, D., Fasolino, A.R., Tramontana, P., Ta, B.D., Memon, A.M.: MobiGUITAR: automated model-based testing of mobile apps. IEEE Softw. 32(5), 53–59 (2015)CrossRefGoogle Scholar
  2. 2.
    Barboni, E., Ladry, J.-F., Navarre, D., Palanque, P., Winckler, M.: Beyond modelling: an integrated environment supporting co-execution of tasks and systems models. In: Proceedings of EICS 2010, pp. 165–174. ACM (2010)Google Scholar
  3. 3.
    Barbosa, A., Paiva, A.C., Campos, J.C.: Test case generation from mutated task models. In: Proceedings of EICS 2011, pp. 175–184. ACM (2011)Google Scholar
  4. 4.
    Campos, J.C., Harrison, M.D.: Interaction engineering using the IVY tool. In: Proceedings of EICS 2009, pp. 35–44. ACM, New York (2009)Google Scholar
  5. 5.
    Campos, J.C., Fayollas, C., Martinie, C., Navarre, D., Palanque, P., Pinto, M.: Systematic automation of scenario-based testing of user interfaces. In: Proceedings of EICS 2016, pp. 138–148. ACM (2016)Google Scholar
  6. 6.
    Gimblett, A., Thimbleby, H.: User interface model discovery: towards a generic approach. In: Proceedings of EICS 2010, pp. 145–154. ACM (2010)Google Scholar
  7. 7.
    International Organization for Standardization: ISO 9241–11: ergonomic requirements for office work with visual display terminals (VDTs) - part 11: guidance on usability. International Organization for Standardization 1998(2), 28 (1998)Google Scholar
  8. 8.
    Jackson, D., Abstractions, S.: Logic, Language, and Analysis. The MIT Press, Cambridge (2006)Google Scholar
  9. 9.
    Lelli, V., Blouin, A., Baudry, B., Coulon, F.: On model-based testing advanced GUIs. In: Proceedings of 2015 IEEE 8th International Conference on Software Testing, Verification and Validation Workshops (ICSTW), 11th Workshop on Advances in Model Based Testing (A-MOST). IEEE (2015)Google Scholar
  10. 10.
    Masci, P., Oladimeji, P., Zhang, Y., Jones, P., Curzon, P., Thimbleby, H.: PVSio-web 2.0: joining PVS to HCI. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 470–478. Springer, Cham (2015). doi: 10.1007/978-3-319-21690-4_30 CrossRefGoogle Scholar
  11. 11.
    Memon, A.M.: A comprehensive framework for testing graphical user interfaces. Ph.D. thesis, University of Pittsburgh (2001)Google Scholar
  12. 12.
    Moreira, R., Paiva, A.C.: PBGT Tool: an integrated modeling and testing environment for pattern-based GUI testing. In: Proceedings of ASE 2014, pp. 863–866. ACM (2014)Google Scholar
  13. 13.
    Morgado, I.C., Paiva, A.C.: The iMPAcT tool: testing ui patterns on mobile applications. In: Proceedings of ASE 2015, pp. 876–881 (2015)Google Scholar
  14. 14.
    Nguyen, B., Robbins, B., Banerjee, I., Memon, A.: GUITAR: an innovative tool for automated testing of GUI-driven software. Autom. Softw. Eng. 21(1), 65–105 (2014)CrossRefGoogle Scholar
  15. 15.
    Paiva, A.C.: Automated specification-based testing of graphical user interfaces. Ph.D. thesis, Engineering Faculty of Porto University, Department of Electrical and Computer Engineering (2007)Google Scholar
  16. 16.
    Reason, J.: Human Error. Cambridge University Press, New York (1990)CrossRefGoogle Scholar
  17. 17.
    Silva, J.L., Campos, J.C., Paiva, A.C.: Model-based user interface testing with Spec Explorer and ConcurTaskTrees. Electron. Notes Theoret. Comput. Sci. 208, 77–93 (2008)CrossRefGoogle Scholar
  18. 18.
    Utting, M., Legeard, B., Testing, P.M.-B.: A Tools Approach. Morgan Kaufmann Publishers Inc., Burlington (2007)Google Scholar
  19. 19.
    W3C: State Chart XML (SCXML): State Machine Notation for Control Abstraction. W3C Recommendation, September 2015Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Miguel Pinto
    • 1
    • 2
  • Marcelo Gonçalves
    • 1
    • 2
  • Paolo Masci
    • 1
    • 2
  • José Creissac Campos
    • 1
    • 2
  1. 1.HASLabINESC TECBragaPortugal
  2. 2.Dep. InformáticaUniversidade do MinhoBragaPortugal

Personalised recommendations