Distal Processes and Effects of Multiple Late Triassic Terrestrial Bolide Impacts: Insights from the Norian Manicouagan Event, Northeastern Quebec, Canada

  • Michael J. Clutson
  • David E. Brown
  • Lawrence H. Tanner
Chapter
Part of the Topics in Geobiology book series (TGBI, volume 46)

Abstract

The Late Triassic (Carnian to Rhaetian Stages: ca. 237–201 Ma) has a long history of geological research, although controversy remains over the precise definition of key sub-unit boundaries, including those defining the three constituent stages. Within this context, at least five terrestrial bolide impact structures ranging from 9 to 85 km in diameter have been identified at present-day northern latitudes, the proximal remnant crater aspects of which have been studied in increasing detail over the last few decades. The more elusive distal sedimentary expressions of these multi-sized hypervelocity events remain largely unknown, although if preserved, identified and interpreted correctly, may (as precisely dateable event horizons) help to address certain existing stratigraphic uncertainties, particularly pertaining to the (longest) Norian Stage. Detailed absolute age-dating using a range of radioisotopic methods (e.g. U-Pb and 40Ar/39Ar) currently indicates that at least three of the confirmed Late Triassic impact craters formed prior to commencement of the major Rhaetian Central Atlantic Magmatic Province (CAMP) volcanic episode by several million years. Impact research efforts to date have focused mainly on describing and process modeling the relatively well-preserved largest impact structure, Manicouagan (215.5 Ma; 85 km diameter) located in northeastern Quebec, Canada and, to a lesser extent, the Saint Martin (227.8 Ma; 40 km) and Rochechouart (ca. 207–201 Ma; ca. 23–50 km) structures in central Manitoba, Canada and west-central France respectively. The smaller, subsurface Red Wing structure (ca. 200 Ma; 9 km diameter, ca. 2.5 km burial depth) located in South Dakota, USA, also has attracted significant economic interest. Unlike the well-documented End Cretaceous Chicxulub impact (66 Ma; ca. 180 Km), attempts to establish a globally significant causal extinction connection between the larger impacts (e.g. Manicouagan and Rochechouart) and Late Triassic marine and terrestrial bioevents, culminating with the ‘End Triassic Extinction’ (ETE), have essentially proved unsuccessful.

Keywords

Bolide Impact structure Microtektite Spherule Ejecta Paleoseismology Paleoearthquake Synsedimentary deformation Microfracture Biotic extinction 

Notes

Acknowledgements

The authors especially wish to thank Martin Schmieder for his comprehensive review of the current manuscript and impactful comments. Rob Weems, Kord Ernstson, Fernando Claudin and Luther Strayer are acknowledged for their technical contributions, knowledge sharing and informative discussions. Thanks are also extended to Grant D. Wach, Yawooz Kettanah, Ricardo L. Silva, Gordon Brown, Ian Spooner, Rob Raeside, Lucy Thompson, Mike Simms among others, and especially to Bill Richards for his assistance in the field and practical research advice.

References

  1. Ackermann RV, Schlische RW, Olsen PE (1995) Synsedimentary collapse of portions of the lower Blomidon Formation (Late Triassic), Fundy Rift Basin, Nova Scotia. Can J Earth Sci 32(11):1965–1976. https://doi.org/10.1139/e95-150 CrossRefGoogle Scholar
  2. Ager D (1995) The new catastrophism: the importance of the rare event in geological history. Cambridge University Press, CambridgeGoogle Scholar
  3. Alexopoulos JS, Grieve RAF, Robertson PB (1988) Microscopic lamellar deformation features in quartz: discriminative characteristics of shock-generated varieties. Geology 16(9):796–799. https://doi.org/10.1130/0091-7613(1988) CrossRefGoogle Scholar
  4. Alsop GI, Marco S (2011) Soft-sediment deformation within seismogenic slumps of the Dead Sea Basin. J Struct Geol 33(4):433–457. https://doi.org/10.1016/j.jsg.2011.02.003 CrossRefGoogle Scholar
  5. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208(4448):1095–1108. https://doi.org/10.1126/science.208.4448.1095 CrossRefGoogle Scholar
  6. Artemieva N, Morgan J (2009) Modeling the formation of the K-Pg boundary layer. Icarus 201:768–780. https://doi.org/10.1016/j.icarus.2009.01.021 CrossRefGoogle Scholar
  7. Badjukov DD, Lobitzer H, Nazarov MA (1987) Quartz grains with planar features in the Triassic-Jurassic Boundary sediments from northern Limestone Alps, Austria. Proceedings of the 18th Lunar and Planetary Science Conference, 16–20 March 1987, Houston, TX:38–39Google Scholar
  8. Badjukov DD, Barsukova LD, Kolesov GM, Nizhegorodova LV, Nazarov MA, Lobitzer H (1988) Element concentrations at the Triassic-Jurassic boundary in the Kendlbachgraben section (Austria). In: Stradner H, Faupl P, Grass F, Mautitsch HJ, Preisinger A, Schwarz C, Zobets E (eds) IGCP Project 199, Rare Events in Geology, Vienna, 12–17 September 1988. Abstracts of Lectures and Excursion Guide, Ber Geol Bundesanst 15:1–2Google Scholar
  9. Bice D, Newton CR, McCauley SE, Reiners PW, McRoberts CA (1992) Shocked quartz at the Triassic/Jurassic boundary in Italy. Science 255(5043):443–446. https://doi.org/10.1126/science.255.5043.443 CrossRefGoogle Scholar
  10. Biren MB, van Soest M, Wartho J-A, Spray JG (2014) Dating the cooling of exhumed central uplifts of impact structures by the (U-Th)/He method: a case study at Manicouagan. Chem Geol 377:56–71. https://doi.org/10.1016/j.chemgeo.2014.03.013 CrossRefGoogle Scholar
  11. Blackburn TJ, Paul E, Olsen PE, Bowring SA, McLean NM, Kent DV, Puffer J, McHone G, Rasbury T, Et-Touhami M (2013) Zircon U-Pb geochronology links the End-Triassic extinction with the Central Atlantic Magmatic Province. Science 330:941–945. https://doi.org/10.1126/science.1234204 CrossRefGoogle Scholar
  12. Blakey RC (2014) Deep Time Maps. http://www2.nau.edu/rcb7/namTr210.jpg. Accessed 2014
  13. Bohor BF, Glass BB (1995) Origin and diagenesis of K/T impact spherules—from Haiti to Wyoming and beyond. Meteorit 30:182–198. https://doi.org/10.1111/j.1945-5100.1995.tb01113 CrossRefGoogle Scholar
  14. Bond DPG, Grasby ES (2017) On the causes of mass extinctions. Paleogeogr Palaeoclimat Palaeoecol 478:3–29. https://doi.org/10.1016/j.palaeo.2016.11.005 CrossRefGoogle Scholar
  15. Bralower TJ, Paull CK, Leckie RM (1998) The Cretaceous-Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows. Geology 26(4):331–334. https://doi.org/10.1130/0091-7613(1999) CrossRefGoogle Scholar
  16. Brookfield ME, Algeo TJ, Hannigan R, William J, Bhat GM (2013) Shaken and stirred: Seismites and tsunamites at the Permian-Triassic boundary, Guryul Ravine, Kashmir, India. PALAIOS 28(8):568–582. https://doi.org/10.2110/palo.2012.p12-070r CrossRefGoogle Scholar
  17. Brown JJ, Spray JG (2015) Constraining the dimensions of the Manicouagan impact structure: analysis of the gravity anomaly. 46th Lunar and Planetary Science Conference, The Woodlands, TX, 16–20 March 2015, Abst:1482Google Scholar
  18. Brown JJ, Spray JG, Thompson LM (2016) Shock Attenuation within the Manicouagan Impact Structure. 47th Lunar and Planetary Science Conference, The Woodlands, TX, 21–25 March 2016, Abst:1996Google Scholar
  19. Butcher GS, Kendall AC, Boyce AJ, Millar IL, Andrews JE, Dennis PF, Steve Grasby S (2012) Age determination of the Lower Watrous red-beds of the Williston Basin, Saskatchewan, Canada. Bull Can Pet Geo 60(4):227–238. https://doi.org/10.2113/gscpgbull.60.4.227 CrossRefGoogle Scholar
  20. Cameron B, Jones JR (1987) Discovery of fossils and meandering stream deposits in the Late Triassic Blomidon Formation of Nova Scotia. In: Bates JL, MacDonald DR (eds) Mines Min Br Rep Activ 1987, Part A. Nova Scotia Dep Mines En Rep 87-5:179–181Google Scholar
  21. Carter NL, Officer CB, Chesner CA, Rose WI (1986) Dynamic deformation of volcanic ejecta from the Toba caldera; Possible relevance to Cretaceous/Tertiary boundary phenomena. Geology 14(5):380–383. https://doi.org/10.1130/0091-7613(1986) CrossRefGoogle Scholar
  22. Cashman SM, Baldwin JN, Cashman KV, Swanson K, Crawford R (2007) Microstructures developed by coseismic and aseismic faulting in near-surface sediments, San Andreas fault, California. Geology 35(7):611–614. https://doi.org/10.1130/G23545A.1 CrossRefGoogle Scholar
  23. Cavosie AJ, Quintero RR, Radovan HA, Moser DE (2015) A record of ancient cataclysm in modern sand: shock microstructures in detrital minerals from the Vaal River, Vredefort Dome, South Africa. Geol Soc Am Bull 122(11/12):1968–1980. https://doi.org/10.1130/B30187.1 Google Scholar
  24. Chapman MG, Evans MA, McHone JF (2004) Triassic cratered cobbles: shock effects or tectonic pressure? Proceedings of the 25th Lunar and Planetary Science Conference, League City, TX, 15–19 March 2004, Abst 35:1424Google Scholar
  25. Chesner CA (2011) The Toba Caldera Caldera complex. Quat Int 258:5–18. https://doi.org/10.1016/j.quaint.2011.09.025 CrossRefGoogle Scholar
  26. Cirilli S, Marzoli A, Tanner LH, Bertrand H, Buratti N, Jourdan F, Bellieni G, Kontak D, Renne RP (2009) The onset of CAMP eruptive activity and the Tr-J boundary: stratigraphic constraints from the Fundy Basin, Nova Scotia. Earth Planet Sci Lett 286(3–4):514–525. https://doi.org/10.1016/j.epsl.2009.07.021 CrossRefGoogle Scholar
  27. Clemmensen L, Kent DV, Jenkins FA (1998) A late Triassic lake system in East-Greenland: facies, depositional cycles and paleoclimate. Paleogeogr Paleoclimat Paleoecol 140(1–4):135–159. https://doi.org/10.1016/S0031-0182(98)00043-1 CrossRefGoogle Scholar
  28. Cohen BE, Mark DF, Lee MR, Simpson SL (2017) A new high-precision 40Ar-39Ar age for the Rochechouart impact structure-At least 5 Ma older than the Triassic-Jurassic boundary. Meteorit Planet Sci 52:1600–1611. https://doi.org/10.1111/maps.12880 CrossRefGoogle Scholar
  29. Collins GS, Melosh HJ, Marcus RA (2005) Earth impact effects program: a Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit Planet Sci 40(6):818–840. https://doi.org/10.1111/j.1945-5100.2005.tb00156 CrossRefGoogle Scholar
  30. Deptuck M, Campbell C (2012) Widespread erosion and mass failure from the ~51 Ma Montagnais marine bolide impact off southwestern Nova Scotia, Canada. Can J Earth Sci 49(12):1567–1594. https://doi.org/10.1139/e2012-075 CrossRefGoogle Scholar
  31. Diaz-Martinez E, Sanz-Rubio E, Martınez-Frias J (2002) Sedimentary record of impact events in Spain. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356:551–562Google Scholar
  32. Doughty M, Eyles N, Eyles CH, Wallace K, Boyce JI (2014) Lake sediments as natural seismographs: earthquake-related deformations (seismites) in central Canadian lakes. Sed Geol 313:45–67. https://doi.org/10.1016/j.sedgeo.2014.09.001 CrossRefGoogle Scholar
  33. Dypvik H, Jansa LF (2003) Sedimentary signatures and processes during marine bolide impacts: a review. Sed Geol 161(3–4):309–337. https://doi.org/10.1016/S0037-0738(03)00135-0 CrossRefGoogle Scholar
  34. Earth Impact Database (2017) Planetary and Space Science Centre (PASSC), University of New Brunswick. http://www.passc.net/EarthImpactDatabase/
  35. Eisbacher GH (1969) Displacement and stress field along part of the Cobequid Fault, Nova Scotia. Can J Earth Sci 6(5):1095–1104. https://doi.org/10.1139/e69-111 CrossRefGoogle Scholar
  36. Ernst RE, Youbi N (2017) How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Paleogeogr Palaeoclimat Palaeoecol 478:30–52. https://doi.org/10.1016/j.palaeo.2017.03.014 CrossRefGoogle Scholar
  37. Ernstson K, Hiltl M (2002) Cratered cobbles in Triassic Buntsandstein conglomerates in northeastern Spain: an indicator of shock deformation in the vicinity of large impacts: comment and reply. Geology 30(11):1051–1052. https://doi.org/10.1130/0091-7613(2002) CrossRefGoogle Scholar
  38. Ernstson K, Hammann W, Fiebag J, Graup G (1985) Evidence of an impact origin for the Azuara structure (Spain). Earth Planet Sci Lett 74(4):361–370. https://doi.org/10.1016/S0012-821X(85)80008-X CrossRefGoogle Scholar
  39. Ernstson K, Rampino MR, Hiltl M (2001) Cratered cobbles in Triassic Buntsandstein conglomerates in northeastern Spain: an indicator of shock deformation in the vicinity of large impacts. Geology 29(1):11–14. https://doi.org/10.1130/0091-7613(2001) CrossRefGoogle Scholar
  40. Fazio A, Folco L, D’Orazio M, Frezzotti ML, Cordier C (2014) Shock metamorphism and impact melting in small impact craters on Earth: evidence from Kamil Crater, Egypt. Meteorit Planet Sci 49(12):2175–2200. https://doi.org/10.1111/maps.12385 CrossRefGoogle Scholar
  41. Fenner FD, Presley BJ (1984) Iridium in Mississippi river suspended matter and Gulf of Mexico sediment. Nature 312(5991):260–262. https://doi.org/10.1038/312260a0 CrossRefGoogle Scholar
  42. Ferrière L, Morrow JR, Amgaa T, Koeberl C (2009) Systematic study of universal-stage measurements of planar deformation features in shocked quartz: implications for statistical significance and representation of results. Meteorit Planet Sci 44(6):925–940. https://doi.org/10.1111/j.1945-5100.2009.tb00778.x/full CrossRefGoogle Scholar
  43. Fink JW (1975) Petrology of the Triassic San Hipolito Formation, Vizcaino Peninsula, Baja California Sur, Mexico. Dissertation, San Diego State UniversityGoogle Scholar
  44. French BM (1998) Traces of Catastrophe: a handbook of shock-metamorphic effects in Terrestrial Meteorite impact structures. Lunar and Planetary Institute Contribution 954, Lunar and Planetary Institute, HoustonGoogle Scholar
  45. French BM (2004) Impact cratering; bridging the gap between modeling and observations. Meteorit Planet Sci 39(2):169–197. https://doi.org/10.1111/j.1945-5100.2002.tb00884 CrossRefGoogle Scholar
  46. French BM, Koeberl C (2010) The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth Sci Rev 98(1–2):123–170. https://doi.org/10.1016/j.earscirev.2009.10.009 CrossRefGoogle Scholar
  47. von Frese R, Potts L, Wells S, Leftwich T, Kim H et al (2009) GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica. Geochem Geophys Geosyst 10(2):1–14. https://doi.org/10.1029/2008GC002149 Google Scholar
  48. Gerhard LC, Anderson SB, Le Fever JA, Carlson CG (1982) Geological development, origin and energy mineral resources of Williston Basin, North Dakota. Am Assoc Pet Geo Bull 66(8):989–1020Google Scholar
  49. Glass BP, Simonson BM (2012) Distal impact ejecta layers: spherules and more. Elements 8:43–48. https://doi.org/10.2113/gselements.8.1.43 CrossRefGoogle Scholar
  50. Glass BP, Simonson BM (2013) Distal impact ejecta layers: a record of large impacts in sedimentary deposits. Springer, BerlinCrossRefGoogle Scholar
  51. Glass BP, Koeberl C, Kirkham A (2003) Glauconitic spherules from the Triassic of the Bristol area, SW England: probably microtektite pseudomorphs: discussion and reply. Proc Geol Assoc 114(2):175–179. https://doi.org/10.1016/S0016-7878(03)80011-1 CrossRefGoogle Scholar
  52. Glikson AY, Tonguç Uysal I, FitzGerald JD, Saygin E (2013) Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-east South Australia: tectonic or impact shock metamorphic origin? Tectonophys 589:57–76. https://doi.org/10.1016/j.tecto.2012.12.036 CrossRefGoogle Scholar
  53. Golonka J (2007) Late Triassic and Early Jurassic palaeogeography of the world. Palaeogeogr Palaeoclimat Palaeoecol 244(1–4):297–307. https://doi.org/10.1016/j.palaeo.2006.06.041 CrossRefGoogle Scholar
  54. Goltrant O, Cordier P, Doukhan J-C (1991) Planar deformation features in shocked quartz; a transmission electron microscopy investigation. Earth Planet Sci Lett 106(1–4):103–115. https://doi.org/10.1016/0012-821X(91)90066-Q CrossRefGoogle Scholar
  55. Gould SR (2001) Integrated sedimentological and whole-rock trace element geochemical correlation of alluvial red-bed sequences at outcrop and in the subsurface. Dissertation, University of AberdeenGoogle Scholar
  56. Gratz AJ, Fisher DK, Bohor BH (1996) Distinguishing shocked from tectonically deformed quartz by the use of SEM and chemical etching. Ear Plan Sci Lett 142(3–4):513–521. https://doi.org/10.1016/0012-821X(96)00099-4 CrossRefGoogle Scholar
  57. Grieve RAF (1991) Terrestrial impact: the record in the rocks. Meteoritics 26(3):175–194. https://doi.org/10.1111/j.1945-5100.1991.tb01038 CrossRefGoogle Scholar
  58. Grieve RAF (1998) Extraterrestrial impacts on earth: the evidence and the consequences. In: Grady MM, Hutchison R, McCall GJH, Rothery DA (eds) Meteorites: flux with time and impact effects. Geological Society of London Special Publication 140:105–131Google Scholar
  59. Grieve RAF (2017) Logan medallist 4: large-scale impact on earth history. Geosci Can 44:1–26.  10.12789/geocanj.2017.44.113
  60. Grieve RAF, Head JW (1983) The Manicouagan impact structure: an analysis of its original dimensions and form. Proceedings of the 13th Lunar Science Conference Part 2, Houston, TX, 15–19 March 1983. J Geophys Res 88:807–818. https://doi.org/10.1029/JB088iS02p0A807/full CrossRefGoogle Scholar
  61. Grieve RAF, Pesonen LJ (1996) Terrestrial impact craters: their spatial and temporal distribution and impacting bodies. Earth, Moon, Planets 72(1–3):357–376. https://doi.org/10.1007/BF00117541 CrossRefGoogle Scholar
  62. Grieve RAF, Langenhorst F, Stöffler D (1996) Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience. Meteorit Planet Sci 31(1):6–35. https://doi.org/10.1111/j.1945-5100.1996.tb02049 CrossRefGoogle Scholar
  63. Güldemeister N, Wünneman K, Durr N, Hiermaier S (2013) Propagation of impact-induced shock waves in porous sandstone using mesoscale modeling. Meteorit Planet Sci 48(1):115–133. https://doi.org/10.1111/j.1945-5100.2012.01430 CrossRefGoogle Scholar
  64. Gurov E, Gurova E, Cernenko Y, Yamnichenko A (2009) The Obolon impact structure, Ukraine, and its ejecta deposits. Meteorit Planet Sci 44(3):389–404. https://doi.org/10.1111/j.1945-5100.2009.tb00740 CrossRefGoogle Scholar
  65. Hallam A (1998) Mass extinctions in Phanerozoic time. In: Grady MM, Hutchison R, McCall GJH, Rothery DA (eds) Meteorites: flux with time and impact effects. Geological Society of London Special Publication 140:259–274Google Scholar
  66. Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, OxfordGoogle Scholar
  67. Hamers MF, Drury MR (2011) Scanning electron microscope-cathodoluminescence (SEM-CL) imaging of planar deformation features and deformation lamellae in quartz. Meteorit Planet Sci 46(12):1814–1831. https://doi.org/10.1111/j.1945-5100.2011.01295. CrossRefGoogle Scholar
  68. Hautmann M (2004) Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction. Facies 50(2):257–261. https://doi.org/10.1007/s10347-004-0020-y CrossRefGoogle Scholar
  69. Hautmann M, Benton MJ, Tomasovych A (2008) Catastrophic ocean acidification at the Triassic-Jurassic boundary. N Jb Geol Pal Abhand 249(1):119–127. https://doi.org/10.1127/0077-7749/2008/0249-0119 CrossRefGoogle Scholar
  70. Hergarten S, Kenkmann T (2015) The number of impact craters on Earth: any room for further discoveries? Earth Planet Sci Lett 425:187–192. https://doi.org/10.1016/j.epsl.2015.06.009 CrossRefGoogle Scholar
  71. Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo ZA, Jacobsen S, Boynton WV (1991) Chicxulub crater: a possible Cretaceous-Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19(9):867–871. https://doi.org/10.1130/0091-7613(1991) CrossRefGoogle Scholar
  72. Hodych JP, Dunning GR (1992) Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geology 20(1):51–54. https://doi.org/10.1130/0091-7613(1992) CrossRefGoogle Scholar
  73. Holm-Alwmark S, Alwmark C, Lindström S, Ferrière L, Scherstén A, Masaitis VL, Mashchak MS, Naumov MV (2016) An Early Jurassic 40Ar39Ar Age for the Puchezh-Katunki Impact Structure (Russia)—No Causal Link to an Extinction Event. 79th Annual Meeting of the Meteoritical Society, 7–12 August, 2016, Berlin, Germany, Abst. 6171. https://www.hou.usra.edu/meetings/metsoc2016/pdf/6171.pdf
  74. Hori RS, Fujiki T, Inoue E, Kimura J-I (2007) Platinum group element anomalies and bioevents in the Triassic–Jurassic deep-sea sediments of Panthalassa. Palaeogeog Palaeoclim Palaeoecol 224(1-4): 391-406. https://doi.org/10.1016/j.palaeo.2006.06.038
  75. Huggett J (2004) Comments on Kirkham’s glauconitic spherules from the Triassic of the Bristol area, SW England: probable microtektite pseudomorphs, with reply by A. Kirkham. Proc Geol Assoc 115(2):189–192. https://doi.org/10.1016/S0016-7878(04)80028-2
  76. Izett GA (1990) The Cretaceous/Tertiary boundary interval, Raton Basin, Colorado and New Mexico, and its content of shock-metamorphosed minerals; evidence relevant to the K-T boundary impact-extinction theory. Special Paper 249. Boulder: Geological Society of America. https://doi.org/10.1130/SPE249
  77. Jansa LF, Pe-Piper G (1987) Identification of an underwater extraterrestrial impact structure. Nature 327(6123):612–614. https://doi.org/10.1038/327612a0 CrossRefGoogle Scholar
  78. Jeans CV (2006) Clay mineralogy of the Permo-Triassic strata of the British Isles: onshore and offshore. Clay Miner 41(1):309–354. https://doi.org/10.1180/0009855064110199 CrossRefGoogle Scholar
  79. Jourdan F, Reimold WU, Deutsch A (2012) Dating terrestrial impact structures. Elements 8:49–53. https://doi.org/10.2113/gselements.8.1.49 CrossRefGoogle Scholar
  80. Kelley SP, Sherlock SC (2013) The geochronology of impact craters. Impact cratering: processes and products. In: Osinski GR, Pierazzo E (eds) Impact cratering. Wiley-Blackwell, Chichester, pp 240–253Google Scholar
  81. Kelley SP, Spray JG (1997) A late Triassic age for the Rochechouart impact structure, France. Meteorit Planet Sci 32:629–636CrossRefGoogle Scholar
  82. Kent DV (1998) Impacts on Earth in the Late Triassic: discussion. Nature 395(6698):126. https://doi.org/10.1038/25874 CrossRefGoogle Scholar
  83. Kent DV, Olsen PE (2000) Magnetic polarity stratigraphy and paleolatitude of the Triassic–Jurassic Blomidon Formation in the Fundy basin (Canada): implications for Early Mesozoic tropical climate gradients. Earth Planet Sci Lett 179(2):311–324. https://doi.org/10.1016/S0012-821X(00)00117-5 CrossRefGoogle Scholar
  84. Kent DV, Olsen PE, Muttoni G (2017) Astrochronostratigraphy polarity time scale (APTS) for the Late Triassic and Early Jurassic from continental sediments and correlation with standard marine stages. Earth Sci Rev 166:153–180. https://doi.org/10.1016/j.earscirev.2016.12.014 CrossRefGoogle Scholar
  85. Kieffer SW (1971) Shock metamorphism of the Coconino Sandstone at Meteor Crater, Arizona. J Geophy Res 76(23):5449–5473. https://doi.org/10.1029/JB076i023p05449 CrossRefGoogle Scholar
  86. Kirkham A (2002) Triassic microtektite pseudomorphs of the Bristol area. Geoscient 12(7):17–18Google Scholar
  87. Kirkham A (2003) Glauconitic spherules from the Triassic of the Bristol area, S.W. England: probable microtektite pseudomorphs. Proc Geol Assoc 114(1):11–21. https://doi.org/10.1016/S0016-7878(03)80025-1 CrossRefGoogle Scholar
  88. Kirkham A (2006) Triassic Meteorite Impact? Mag Geol Assoc 5(4):21Google Scholar
  89. Koeberl C, MacLeod KG (eds) 2002. Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356, Geological Society of America, BoulderGoogle Scholar
  90. Koeberl C, Reimold WU, Brandt D (1996) Red Wing creek structure, North Dakota: petrographical and geochemical studies, and confirmation of impact origin. Meteorit Planet Sci 31:335–342. https://doi.org/10.1111/j.1945-5100.1996.tb02070
  91. Kohút M, Hofmann M, Havrila M, Linnemann U, Havrila J (2017) Tracking an upper limit of the “Carnian crisis” and/or Carnian Stage in the Western Carpathians (Slovakia). Internat J Earth Sci. https://doi.org/10.10007/s00531-017-1491-8
  92. Kowitz A, Güldemeister N, Reimold WU, Schmitt RT, Wünnemann K (2013) Diaplectic quartz glass and SiO2 melt experimentally generated at only 5 GPa shock pressure in porous sandstone: laboratory observations and meso-scale numerical modeling. Earth Planet Sci Lett 384:17–26. https://doi.org/10.1016/j.epsl.2013.09.021 CrossRefGoogle Scholar
  93. Kozur HW, Weems RE (2010) The biostratigraphic importance of conchostracans in the continental Triassic of the northern hemisphere. In: Lucas SG (ed) The Triassic Timescale. Geological Society of London Special Publication 334:315–417Google Scholar
  94. Kring DA (2007) The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary. Palaeogeogr Palaeoclimat Palaeoecol 255(1–2):4–21. https://doi.org/10.1016/j.palaeo.2007.02.037 CrossRefGoogle Scholar
  95. Kring DA, Boynton WV (1991) Altered spherules of impact melt and associated relic glass from the KIT boundary sediments in Haiti. Geochim Cosmochim Act 55(6):1737–1742. https://doi.org/10.1016/0016-7037(91)90143-S CrossRefGoogle Scholar
  96. Kyte FT (2002) Tracers of the extraterrestrial component in sediments and inferences for Earth’s accretion history. In: Koeberl C, MacLeod K (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356:21–28Google Scholar
  97. Lambert P, Goderis S, Hodges KV, Kelley S, Lee MR, Jourdan F, Osinski GR, Sapers HM, Schmieder M, Schwenzer S, Trumel H, Wittmann A (2016) Preparing the 2017 drilling campaign at Rochechouart impact structure. 79th Annual Meeting of the Meteoritical Society, 7-12 August 2016, Berlin, Germany. Abst: Meteorit Planet Sci 51 (Suppl.): A6471. https://www.hou.usra.edu/meetings/metsoc2016/pdf/6471.pdf; https://www.hou.usra.edu/meetings/metsoc2016/eposter/6471.pdf
  98. Latjai EZ, Stringer P (1981) Joints, tensile strength and preferred fracture orientation in sandstones, New Brunswick and Prince Edward Island, Canada. Mar Sed Atl Geol 17(2):70–87. https://doi.org/10.4138/1377 Google Scholar
  99. Leleu S, Hartley AJ (2010) Controls on the stratigraphic development of the Triassic Fundy Basin, Nova Scotia: implications for the tectonostratigraphic evolution of Triassic Atlantic rift basins. J Geol Soc Lond 167(3):437–454. https://doi.org/10.1144/0016-76492009-092 CrossRefGoogle Scholar
  100. Leleu S, Hartley AJ (2016) Constraints on synrift intrabasinal horst development from alluvial fan and eolian deposits (Triassic, Fundy Basin, Nova Scotia. In: Ventra D, Clarke LE (eds) Geology and geomorphology of alluvial and fluvial fans: terrestrial and planetary perspectives. Geological Society of London Special Publication 440. https://doi.org/10.1144/SP440.8
  101. Leslie AB, Spiro B, Tucker ME (1993) Geochemical and mineralogical variations in the upper Mercia Mudstone Group (Late Triassic), Southwest Britain; correlation of outcrop sequences with borehole geophysical logs. J Geol Soc Lond 150(1):67–75. https://doi.org/10.1144/gsjgs.150.1.0067 CrossRefGoogle Scholar
  102. Lindström S, Pedersen GK, van de Schootbrugge B, Hovedskov K, Hansen K, Kuhlmann N, Thein J, Johansson L, Petersen HI, Alwmark C, Dybkjær K, Weibel R, Erlström M, Nielsen LH, Wolfgang N, Oschmann W, Tegner C (2015) Intense and widespread seismicity during the end-Triassic mass extinction due to emplacement of a large igneous province. Geology 43(5):387–390. https://doi.org/10.1130/G36444.1 CrossRefGoogle Scholar
  103. Lindström S, van de Schootbrugge B, Hansen KH, Pedersen GK, Alsen P, Thibault N, Dybkjær K, Bjerrum CJ, Nielsen LH (2017) A new correlation of Triassic-Jurassic boundary successions in NW Europe, Nevada and Peru, and the Central Atlantic Magmatic Province: a time-line for the end-Triassic mass extinction. Paleogeogr Palaeoclimat Palaeoecol 478:80–102. https://doi.org/10.1016/j.palaeo.2016.12.025 CrossRefGoogle Scholar
  104. Lucas SG (2010) The Triassic timescale based on nonmarine tetrapod biostratigraphy and biochronology. In: Lucas SG (ed) The Triassic Timescale. Geological Society of London Special Publication 334:447–500Google Scholar
  105. Lucas SG (2013) A new Triassic timescale. In: Tanner LH, Spielmann JA, Lucas SG (eds) The Triassic System New Mex Mus Nat Hist Sci Bull 61:366–374Google Scholar
  106. Lucas SG, Tanner LH (2008) Reexamination of the end-Triassic mass extinction. In: Elewa AMT (ed) Mass extinction. Springer Verlag, New York, pp 66–103. https://doi.org/10.1007/978-3-540-75916-4_8 Google Scholar
  107. Lucas SG, Tanner LH (2015) End-Triassic nonmarine biotic events. J Palaeogeogr 4(4):331–348. https://doi.org/10.1016/j.jop.2015.08.010 CrossRefGoogle Scholar
  108. Lucas SG, Tanner LH (2017) Timing and mechanisms of extinctions during the Late Triassic. In: Tanner LH (ed) The Late Triassic world: earth in a time of transition. Topics in Geobiology, Springer (this volume)Google Scholar
  109. Lucas SG, Tanner LH, Kozur HW, Weems RE, Heckert AB (2012) The Late Triassic timescale: age and correlation of the Carnian–Norian boundary. Earth-Sci Rev 114(1–2):1–18. https://doi.org/10.1016/j.earscirev.2012.04.002 CrossRefGoogle Scholar
  110. Marzoli A, Bertrand H, Knight KB, Cirilli S, Buratti N, Vérati C, Nomade S, Renne PR, Youbi N, Martini R, Allenbach J, Neuwerth R, Rapaille C, Zaninetti L, Bellieni G (2004) Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis. Geology 32(11):973–976. https://doi.org/10.1130/G20652.1 CrossRefGoogle Scholar
  111. Marzoli A, Callagaro S, Dal Corso J, Youbi N, Bertrand H, Reisberg L, Chiaradia M, Merle R, Jourdan F (2017) The Central Atlantic magmatic province: a review. In: Tanner LH (ed) The Late Triassic world: earth in a time of transition. Topics in Geobiology, Springer (this volume)Google Scholar
  112. Masaitis VL, Danilin AN, Mashchak MS, Raikhlin AI, Selivanovskaya TV, Shadenkov EM (1980) The geology of astroblemes. Nedra, LeningradGoogle Scholar
  113. McLaren DL, Goodfellow WD (1990) Geological and biological consequences of giant impacts. Ann Rev Ear Plan Sci 18:123–171. https://doi.org/10.1146/annurev.ea.18.050190.001011 CrossRefGoogle Scholar
  114. McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2(4):1–10. https://doi.org/10.1029/2000GC000109 CrossRefGoogle Scholar
  115. Meier MM, Holm-Alwmark S (2017) A tale of clusters: no resolvable periodicity in the terrestrial impact cratering record. Mon Not R Astron Soc 467(3):2545–2551. https://doi.org/10.1093/mnras/stx211 Google Scholar
  116. Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press, New YorkGoogle Scholar
  117. Milroy P (1998) Palaeoenvironmental Analysis of the Upper Triassic Mercia Mudstone Group Southwest Britain. Dissertation, University Bristol. https://www.researchgate.net/publication/35719076
  118. Montenat C, Barrier P, Ott d’Estevou P, Hibsch C (2007) Seismites: an attempt at critical analysis and classification. Sed Geol 196(1–4):5–30. https://doi.org/10.1016/j.sedgeo.2006.08.004 CrossRefGoogle Scholar
  119. Moore RG, Ferguson SA, Boehner RC, Kennedy CM (2009) Bedrock geology map of the Wolfville-Windsor Area, NTS sheet 21H/01 and part of 21A/16, Hants and Kings Counties, Nova Scotia. Nova Scotia Depart Nat Res Min Res Branch, Open File Map ME 2000–3, version 2, 1:50,000Google Scholar
  120. Mossman DJ, Grantham RG, Lagenhorst F (1998) A search for shocked quartz at the Triassic-Jurassic boundary in the Fundy and Newark basins of the Newark Supergroup. Can J Earth Sci 35(2):101–109. https://doi.org/10.1139/e97-101 CrossRefGoogle Scholar
  121. Murphy B, Waldron JWF, Kontak DJ, Pe-Piper G, Piper DJW (2011) Minas fault zone: Late Paleozoic history of an intra-continental orogenic transform fault in the Canadian Appalachians. Jour Struct Geol 33(3):312–328. https://doi.org/10.1016/j.jsg.2010.11.012 CrossRefGoogle Scholar
  122. Nadon GC, Middleton GV (1985) The stratigraphy and sedimentology of the Fundy Group (Triassic) of the St. Martins area, New Brunswick. Can J Earth Sci 22(8):1183–1203. https://doi.org/10.1139/e85-121 CrossRefGoogle Scholar
  123. Noll KS, Feldman PD, Weaver HA (eds) (1996) The collision of Comet Shoemaker–Levy 9 and Jupiter. Cambridge University Press, CambridgeGoogle Scholar
  124. Nomade S, Knight KB, Beutel E, Renne PR, Verati C, Feraud G, Marzoli A, Youbi N, Bertrand H (2007) Chronology of the Central Atlantic Magmatic Province: implications for the Central Atlantic rifting processes and the Triassic–Jurassic biotic crisis. Palaeogeogr Palaeoclimat Palaeoecol 244(1–4):326–344. https://doi.org/10.1016/j.palaeo.2006.06.034 CrossRefGoogle Scholar
  125. O’Connell-Cooper CD, Spray JG (2010) Geochemistry of the Manicouagan Impact melt sheet. Proceedings of the 41st Lunar and Planetary Science Conference, The Woodlands, TX, 1–5 March 2010, Abst: 1755Google Scholar
  126. Ogg JG, Huang C, Hinnov L (2014) Triassic timescale status: a brief overview. Albertiana 41:3–30Google Scholar
  127. Ogg JG, Ogg G, Gradstein FM (2016) A concise geologic time scale. Elsevier. store.elsevier.com/9780444637710
  128. Olsen PE, Et-Touhami M (2008) Field Trip #1: tropical to subtropical syntectonic sedimentation in the Permian to Jurassic Fundy Rift Basin, Atlantic Canada, in relation to the Moroccan Conjugate Margin. Central Atlantic Conjugate Margins Conference, Halifax, Canada, 13–15 August 2008Google Scholar
  129. Olsen PE, Shubin NH, Anders MH (1987) New Early Jurassic tetrapod assemblages constrain Triassic-Jurassic tetrapod extinction event. Science 237(4818):1025–1029. https://doi.org/10.1126/science.3616622 CrossRefGoogle Scholar
  130. Olsen PE, Schlische RW, Gore PJW et al (1989) Field Guide to the Tectonics, stratigraphy, sedimentology, and paleontology of the Newark Supergroup, eastern North America. 28th International Geological Congress, Washington DC, 9–19 August 1989, Field Trip Guidebook T351Google Scholar
  131. Olsen PE, Fowell SJ, Cornet B (1990) The Triassic/Jurassic boundary in continental rocks of eastern North America; a progress report. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth history: an interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America Special Paper 247:585–593Google Scholar
  132. Olsen PE, Kent DV, Sues HD, Koeberl C, Huber H, Montanari A, Rainforth EC, Fowell SJ, Szajna MJ, Hartline BW (2002a) Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science 296(5571):1305–1307. https://doi.org/10.1126/science.1065522 CrossRefGoogle Scholar
  133. Olsen PE, Koeberl C, Huber H, Montanari A, Fowell S, Et-Touhami M, Kent DV (2002b) The continental Triassic–Jurassic boundary in central Pangea: recent progress and preliminary report of an Ir anomaly. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356:505–522Google Scholar
  134. Olsen P, Kent DV, Et-Touhami M (2003) Chronology and stratigraphy of the Fundy and related Nova Scotia offshore basins and Morocco based on core and outcrop. Conventional Core Workshop. Joint Annual Conference of the Geological Society of America (NE Section) and Atlantic Geoscience Society, Halifax, Nova Scotia, Canada, 27–29 March 2003, 51–63Google Scholar
  135. Olsen PE, Kent DV, Whiteside JH (2010) Implications of the Newark Supergroup-based astrochronology and geomagnetic polarity time scale (Newark-APTS) for the tempo and mode of the early diversification of the Dinosauria. Earth Env Sci Trans Roy Soc Edinburgh 101(3–4):201–229. https://doi.org/10.1017/S1755691011020032 CrossRefGoogle Scholar
  136. Onoue T, Sato H, Nakamura T, Noguchi T, Hidaka Y, Shiraid N, Ebihara M, Osawa T, Hatsukawa Y, Toh Y, Koizumi M, Harada H, Orchard MJ, Nedachig M (2012) Deepsea record of impact apparently unrelated to mass extinction in the Late Triassic. Proc Nat Acad Sci USA 109(47):19134–19139. https://doi.org/10.1073/pnas.1209486109 CrossRefGoogle Scholar
  137. Onoue T, Sato H, Yamashita D, Ikehara M, Yasukawa K, Fujinaga K, Kato Y, Matsuoka A (2016) Bolide impact triggered the Late Triassic extinction event in equatorial Panthalassa. Sci Rep 6:29609. https://doi.org/10.1038/srep29609 CrossRefGoogle Scholar
  138. Orchard MJ, Whalen A, Carter E, Taylor H (2007) Latest Triassic Conodonts and Radiolarian- bearing Successions in Baja California Sur. In: Lucas SG, Spielmann JA (eds) The Global Triassic. New Mex Mus Nat Hist Sci Bull 41:355–365Google Scholar
  139. Orth CJ (1989) Geochemistry of the bio-event horizons. In: Donovan SK (ed) Mass extinctions: processes and evidence. Columbia University Press, New York, pp 37–72Google Scholar
  140. Orth CJ, Attrepe M Jr, Quintana LR (1990) Iridium abundance patterns across bio-event horizons in the fossil record. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth history: an interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America Special Paper 247:45–59Google Scholar
  141. Osawa T, Hatsukawa Y, Nagao K, Koizumi M, Oshima M, Toh Y, Kimura A, Furutaka K (2009) Iridium concentration and noble gas composition of Cretaceous-Tertiary boundary clay from Stevns Klint, Denmark. Geochem J 43(6):415–422CrossRefGoogle Scholar
  142. Osinski GR (2013) Processes and products of impact cratering; glossary and definitions. In: Osinski GR, Pierazzo E (eds) Impact cratering: processes and products. Blackwell, Oxford, pp 306–309Google Scholar
  143. Osinski GR, Pierazzo E (2013) Impact cratering: processes and products. In: Osinski GR, Pierazzo E (eds) Impact cratering: processes and products. Wiley-Blackwell, Chichester, pp 125–145Google Scholar
  144. Osinski GR, Tornabene LL, Grieve RAF (2011) Impact ejecta emplacement on terrestrial planets. Earth Planet Sci Lett 310(3–4):167–181. https://doi.org/10.1016/j.epsl.2011.08.012 CrossRefGoogle Scholar
  145. Osinski GR, Grieve RAF, Tornabene LL (2013) Excavation and impact ejecta emplacement. Impact cratering: processes and products. In: Osinski GR, Pierazzo E (eds) Impact cratering. Wiley-Blackwell, Chichester, pp 43–59Google Scholar
  146. Pálfy J (2004) Did the Puchezh-Katunki impact trigger an extinction? In: Dypvik H, Burchel MJ, Claeys P (eds) Cratering in marine environments and on Ice. Submarine craters and ejecta-crater correlation. Impact studies series. Springer, Berlin, pp 135–148Google Scholar
  147. Pálfy J, Zajzon N (2012) Environmental changes across the Triassic-Jurassic boundary and coeval volcanism inferred from elemental geochemistry and mineralogy in the Kendlbachgraben section (northern Calcareous Alps, Austria). Earth Planet Sci Lett 335–336:121–134. https://doi.org/10.1016/j.epsl.2012.01.039 CrossRefGoogle Scholar
  148. Pálfy J, Mortensen JK, Carter ES, Smith PL, Friedman RM, Tipper HW (2000) Timing the end-Triassic mass extinction: first on land, then in the sea? Geology 28(1):39–42. https://doi.org/10.1130/0091-7613(2000) CrossRefGoogle Scholar
  149. Pearson DG (1999) The age of continental roots. Lithos 48(1–4):171–194. https://doi.org/10.1016/S0024-4937(99)00026-2 CrossRefGoogle Scholar
  150. Pickersgill AE (2014) Shock metamorphic effects in lunar and terrestrial plagioclase feldspar investigated by optical petrography and micro-X-ray diffraction. Dissertation, University of Western OntarioGoogle Scholar
  151. Pickersgill AE, Lee MR, Mark DF, Osinski GR (2015) Shock metamorphism in impact melt rocks from the Gow Lake impact structure, Saskatchewan, Canada. 46th Lunar and Planetary Science Conference, The Woodlands, TX, 16–20 March 2015, Abst 46:2181Google Scholar
  152. Pieńkowski G, Niedźwiedzki G, Waksmundzka M (2012) Sedimentological, palynological and geochemical studies of the terrestrial Triassic-Jurassic boundary in northwestern Poland. Geo Mag 149(2):308–332. https://doi.org/10.1017/S0016756811000914 CrossRefGoogle Scholar
  153. Pieńkowski G, Niedźwiedzki G, Branski P (2014) Climatic reversals related to the Central Atlantic magmatic province caused the end-Triassic biotic crisis—evidence from continental strata in Poland. Geological Society of America Special Paper 505:263–286CrossRefGoogle Scholar
  154. Plado J (2012) Meteorite impact craters and possibly impact-related structures in Estonia. Meteorit Planet Sci 47(10):1590–1605. https://doi.org/10.1111/j.1945-5100.2012.01422 CrossRefGoogle Scholar
  155. Plint AG (1985) Possible earthquake-induced soft-sediment faulting and remobilization in Pennsylvanian alluvial strata, southern New Brunswick, Canada. Can J Earth Sci 22(6):907–912. https://doi.org/10.1139/e85-094 CrossRefGoogle Scholar
  156. Racki G (2012) The Alvarez impact theory of mass extinction; limits to its applicability and the “great expectations syndrome”. Act Palaeontol Pol 57(4):681–702. https://doi.org/10.4202/app.2011.0058 CrossRefGoogle Scholar
  157. Rajmon D (2010) Impact Database. http://impacts.rajmon.cz/index.html
  158. Ramezani J, Bowring SA, Pringle MS, Winslow FD III, Rasbury ET (2005) The Manicouagan impact melt rock: a proposed standard for the intercalibration of U-Pb and 40Ar/39Ar isotopic systems. Geochim Cosmochim Act 69(10) Suppl: Goldschmidt Conference Abstracts 2005:301–350, Abst:A321.Google Scholar
  159. Rampino MR, Haggerty BM (1996) Impact crises and mass extinctions: a working hypothesis. In: Ryder G, Fastovsky D, Gartner S (eds) The Cretaceous Tertiary event and other catastrophes in Earth history. Geological Society of America Special Paper 307:11–30Google Scholar
  160. Reimold WU, Oskierski W (1987) The Rb-Sr-age of the Rochechouart impact structure, France, and geochemical constraints on impact melt-target rock-meteorite compositions. In: Pohl J (ed) Research in terrestrial impact structures. Vieweg, Braunschweig; Wiesbaden, pp 94–114. https://doi.org/10.1002/gj.3350240211 CrossRefGoogle Scholar
  161. Reimold WU, Ferrière L, Deutsch A, Koeberl C (2014) Impact controversies: impact recognition criteria and related issues. Meteorit Planet Sci 49(5):723–731. https://doi.org/10.1111/maps.12284 CrossRefGoogle Scholar
  162. Renne PR, Deino AL, Hilgen FJ, Kuiper KF, Mark DF, Mitchell WS, Morgan LE, Mundil R, Smit J (2013) Time scales of critical events around the cretaceous-paleogene boundary. Science 39(6120):684–687. https://doi.org/10.1126/science.1230492 CrossRefGoogle Scholar
  163. Richoz S, van de Schootbrugge B, Pross J, Püttmann W, Quan TM, Lindström S, Heunisch C, Fiebig J, Maquil R, Schouten S, Hauzenberger CA, Wignall PB (2012) Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nat Geosci 5(9):662–667. https://doi.org/10.1038/ngeo1539 CrossRefGoogle Scholar
  164. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38(2):191–219. https://doi.org/10.1029/1998RG000054 CrossRefGoogle Scholar
  165. Ruffell A (1991) Palaeoenvironmental analysis of the late Triassic succession in the Wessex Basin and correlation with surrounding areas. Proc Ussher Soc 7(4):402–407Google Scholar
  166. Ruhl M, Bonis NR, Reichart G-J, Sinninghe D, Jaap S, Kuerschner WF (2011) Atmospheric carbon injection linked to end-Triassic mass extinction. Science 333(6041):430–434. https://doi.org/10.1126/science.1204255 CrossRefGoogle Scholar
  167. Sapers HM, Osinski GR, Banerjee NR, Ferrière L, Lambert P, Izawa RM (2014) Revisiting the Rochechouart impact structure, France. Meteorit Planet Sci 49(12):2152–2168. https://doi.org/10.1111/maps.12381 CrossRefGoogle Scholar
  168. Sato H, Onoue T (2010) Discovery of Ni-rich spinels in Upper Triassic chert of the Mino Terrane, central Japan. J Geol Soc Jpn 116:575–578. https://doi.org/10.5575/geosoc.116.575 CrossRefGoogle Scholar
  169. Sato H, Onoue T, Nozaki T, Suzuki K (2013) Osmium isotope evidence for a large Late Triassic impact event. Nat Commun 4:2455. https://doi.org/10.1038/ncomms3455 CrossRefGoogle Scholar
  170. Sato H, Shirai N, Ebihara M, Onoue T, Kiyokawa S (2016) Sedimentary PGE signatures in the Late Triassic ejecta deposits from Japan: implications for the identification of impactor. Paleogeogr Palaeoclimat Palaeoecol 442:36–47. https://doi.org/10.1016/j.palaeo.2015.11.015 CrossRefGoogle Scholar
  171. Schaller MF, Wright JD, Kent DV (2011) Atmospheric pCO2 perturbations associated with the Central Atlantic magmatic province. Science 331(6023):1404–1409. https://doi.org/10.1126/science.1199011 CrossRefGoogle Scholar
  172. Schaltegger U, Guex J, Bartolini A, Schoene B, Ovtcharov M (2008) Precise U-Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth Planet Sci Lett 267(1–2):266–275. https://doi.org/10.1016/j.epsl.2007.11.031 CrossRefGoogle Scholar
  173. Schedl A (2015) Searching for distal ejecta on the craton: the sedimentary effects of meteorite impact. J Geol 123(3):201–203. https://doi.org/10.1086/681624 CrossRefGoogle Scholar
  174. Schmieder M (2010) New aspects of the Middle-Late Triassic terrestrial impact cratering record. Dissertation, University of StuttgartGoogle Scholar
  175. Schmieder M, Buchner E (2008) Dating impact craters: palaeogeographic versus isotopic and stratigraphic methods—a brief case study. Camb Univ Geol Mag 145(4):586–590. https://doi.org/10.1017/s0016756808005049 Google Scholar
  176. Schmieder M, Buchner E, Schwarz WH, Trieloff M, Lambert P (2010a) A Rhaetian 40Ar⁄39Ar age for the Rochechouart impact structure (France) and implications for the latest Triassic sedimentary record. Meteorit Planet Sci 45(8):1225–1242. https://doi.org/10.1111/j.1945-5100.2010.01070.x/ CrossRefGoogle Scholar
  177. Schmieder M, Schwarz WH, Buchner E, Trieloff M, Moilanen J, Öhman T (2010b) A Middle Late Triassic 40Ar/39Ar age for the Paasselkä impact structure (SE Finland). Meteorit Planet Sci 45(4):572–582. https://doi.org/10.1111/j.1945-5100.2010.01041.x/full CrossRefGoogle Scholar
  178. Schmieder M, Jourdan F, Tohver E, Cloutis E (2014) 40Ar/39Ar age of the Lake Saint Martin impact structure (Canada)—Unchaining the Late Triassic terrestrial impact craters. Lunar Plan Sci Lett 406:37–48. https://doi.org/10.1016/j.epsl.2014.08.037 CrossRefGoogle Scholar
  179. van de Schootbrugge B, Tremolada F, Rosenthal Y, Bailey TR, Feist-Burkhardt S, Brinkhuis H, Pross J, Kent DV, Falkowski PG (2007) End-Triassic calcification crisis and blooms of organic-walled ‘disaster species’. Palaeogeogr Palaeoclim Palaeoecol 244(1–4):126–141. https://doi.org/10.1016/j.palaeo.2006.06.026 CrossRefGoogle Scholar
  180. van de Schootbrugge B, Payne JL, Tomasovych A, Pross J, Fiebig J, Benbrahim M, Föllmi KB, Quan TM (2008) Carbon cycle perturbation and stabilization in the wake of theTriassic-Jurassic boundary mass-extinction event. Geochem Geophys Geosys 9(4):Q04028. https://doi.org/10.1029/2007GC001914 Google Scholar
  181. van de Schootbrugge B, Quan T, Lindström S, Püttmann W, Heunisch C, Pross J, Fiebig J, Petschick R, Röhling H-G, Richoz S, Rosenthal Y, Falkowski PG (2009) Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nat Geosci 2(8):589–594. https://doi.org/10.1038/ngeo577 CrossRefGoogle Scholar
  182. van de Schootbrugge B, Bachan A, Suan G, Richoz S, Payne JL (2013) Microbes, mud and methane: cause and consequence of recurrent Early Jurassic anoxia following the end-Triassic mass-extinction. Palaeontology 56(4):685–709. https://doi.org/10.1111/pala.12034 CrossRefGoogle Scholar
  183. Schwarz WH, Schmieder M, Buchner E, Trieloff M, Moilanen J, Öhman T (2015) A Carnian 40Ar/39Ar age for the Paasselkä impact structure (SE Finland)—an update. Meteorit Planet Sci 50(1):135–140. https://doi.org/10.1111/maps.12407/full CrossRefGoogle Scholar
  184. Shanmugam G (2016) The seismite problem. J Palaeogeogr 5(4):318–362. https://doi.org/10.1016/j.jop.2016.06.002 CrossRefGoogle Scholar
  185. Shanmugam G (2017) The fallacy of interpreting SSDS with different types of breccias as seismites amid the multifarious origins of earthquakes: implications. J Palaeogeogr 6(1):12–44. https://doi.org/10.1016/j.jop.2016.09.001 CrossRefGoogle Scholar
  186. Sharpton VL, Schuraytz BC (1989a) On reported occurrences of shock-deformed clasts in the volcanic ejecta from Toba Caldera, Sumatra. Proceedings of the 20th Lunar and Planetary Science Conference, Houston, TX, 13–17 March 1989, Abst 20:992Google Scholar
  187. Sharpton VL, Schuraytz BC (1989b) On reported shock deformation in Toba volcanic deposits. Proceedings of the 20th Lunar and Planetary Science Conference, Houston, TX, 13–17 March 1989, Abst 20:993Google Scholar
  188. Sigurdsson H (1990) Assessment of atmospheric impact of volcanic eruptions. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth history. Geological Society of America of Special Paper 247:99–110Google Scholar
  189. Silberling NJ (1985) Biogeographic significance of the Upper Triassic Bivalve Monotis in Circum-Pacific Accreted Terranes. In: Howell DG (ed) Tectonostratigraphic terranes of the Circum-Pacific Region. Circum-Pacific Council on Energy and Mineral Resources, Earth Science Series 1:63–70Google Scholar
  190. Simms MJ (2003) Uniquely extensive seismite from the latest Triassic of the United Kingdom: evidence for bolide impact? Geology 31(6):557–560. https://doi.org/10.1130/0091-7613(2003) CrossRefGoogle Scholar
  191. Simms MJ (2007) Uniquely extensive soft-sediment deformation in the Rhaetian of the UK: evidence for earthquake or impact? Palaeogeogr Palaeoclimat Palaeoecol 244(1–4):407–423. https://doi.org/10.1016/j.palaeo.2006.06.037 CrossRefGoogle Scholar
  192. Simms MJ, Ruffell AH (1990) Climatic and biotic change in the late Triassic. J Geol Soc Lond 147(2):321–327. https://doi.org/10.1144/gsjgs.147.2.0321 CrossRefGoogle Scholar
  193. Smit J (1999) The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta. Annu Rev Earth Planet Sci 27:75–113. https://doi.org/10.1146/annurev.earth.27.1.75
  194. van Soest MC, Hodges KV, Wartho JA, Biren MB, Monteleone BD, Ramezani J, Spray JG, Thompson LM (2011) (U–Th)/He dating of terrestrial impact structures: The Manicouagan example. Geochem Geophys Geosyst 12(5):Q0AA16, 1–8. https://doi.org/10.1029/2010GC003465
  195. Spooner I, Stevens G, Morrow J, Pufahl P, Grieve R, Raeside R, Pilon J, Stanley C, Barr S, McMullin D (2009) Identification of the Bloody Creek structure, a possible bolide impact crater in southwestern Nova Scotia, Canada. Meteorit Planet Sci 44(8):1193–1202. https://doi.org/10.1111/j.1945-5100.2009.tb01217 CrossRefGoogle Scholar
  196. Spooner I, Pufahl P, Brisco T, Morrow J, Nalepa M, Williams P, Stevens G (2015) The North structure: evidence for a possible second impact near the Bloody Creek site, Nova Scotia, Canada. Atlant Geol 51:44–50. https://doi.org/10.4138/atlgeol.2015.002 CrossRefGoogle Scholar
  197. Spray JG, Kelley SP, Rowley DB (1998) Evidence for a Late Triassic multiple impact event on Earth. Nature 392(6672):171–173. https://doi.org/10.1038/32397 CrossRefGoogle Scholar
  198. Spray JG, Thompson LM, Biren MB, O’Connell-Cooper CD (2010) The Manicouagan impact structure as a terrestrial analogue site for lunar and Martian planetary science. Planet Space Sci 58(4):538–551. https://doi.org/10.1016/j.pss.2009.09.010 CrossRefGoogle Scholar
  199. Steinthorsdottir M, Jeram AJ, McElwain JC (2011) Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary. Palaeogeogr Palaeoclimat Palaeoecol 308(3–4):418–432. https://doi.org/10.1016/j.palaeo.2011.05.050 CrossRefGoogle Scholar
  200. Stöffler D, Grieve RAF (2007) Impactites, Chapter 2.11. In: Fettes D, Desmons J (eds) Metamorphic rocks: a classification and glossary of terms. Cambridge University Press, Cambridge UK, 82–91, 111–125, 126–242Google Scholar
  201. Strayer LM, Allen JR (2008) The Oakland Conglomerate: a Hayward Fault Tectonite? American Geophysical Union Fall Meeting, San Francisco, CA, 15–19 December 2008, Abst: T51A-1862Google Scholar
  202. Sues HD, Olsen PE (2015) Stratigraphic and temporal context and faunal diversity of Permian-Jurassic continental tetrapod assemblages from the Fundy rift basin, eastern Canada. Atlan Geol 51:139–205. https://doi.org/10.4138/atlgeol.2015.006 CrossRefGoogle Scholar
  203. Sulej T, Wolniewicz A, Bonde N, Błaźejowski B, Niedźwiedzki G, Tałanda M (2014) New perspectives on the Late Triassic vertebrates of East Greenland: preliminary results of a Polish-Danish palaeontological expedition. Pol Pol Res 35(4):541–552. https://doi.org/10.2478/popore-2014-0030 Google Scholar
  204. Tackett LS, Bottjer DJ (2012) Faunal succession of Norian (Late Triassic) level bottom benthos in the Lombardian Basin: implications for the timing, rate, and nature of the early Mesozoic marine revolution. PALAIOS 27(8):585–593. https://doi.org/10.2110/palo.2012.p12-028r CrossRefGoogle Scholar
  205. Tackett LS, Bottjer DJ (2016) Paleoecological succession of Norian (Late Triassic) benthic fauna in eastern Panthalassa (Luning and Gabbs Formations, west-central Nevada). PALAIOS 31(4):190–202. https://doi.org/10.2110/palo.2015.070 CrossRefGoogle Scholar
  206. Tackett LS, Bottjer DJ, Sheehan PM, Fastovsky D (2009) Comparative effects of two large bolide impact events: Chicxulub and Manicouagan. Geological Society of America Annual Meeting, Portland, OR, 18–21 October 2009, Abstracts & Program 41(7), Abst: 240Google Scholar
  207. Tackett LS, Kaufman AJ, Corsetti FA, Bottjer DJ (2014) Strontium isotope stratigraphy of the Gabbs Formation (Nevada): implications for global Norian–Rhaetian correlations and faunal turnover. Lethaia 47(4):1–11. https://doi.org/10.1111/let.12075 CrossRefGoogle Scholar
  208. Tagle R, Schmitt RT, Erzinger J (2009) Identification of the projectile component in the impact structures Rochechouart, France and Sääksjärvi, Finland: implications for the impactor population for the earth. Geochim Cosmochim Act 73(16):4891–4906. https://doi.org/10.1016/j.gca.2009.05.044 CrossRefGoogle Scholar
  209. Tanner LH (2002) Stratigraphic record in the Fundy rift basin of the Manicouagan impact: Bolide with a bang or a whimper? Geological Society of America, Northeast Section—37th Annual Meeting, Springfield MA, 25–27 March 2002, Abst: 31805Google Scholar
  210. Tanner LH (2003) Far-reaching seismic effects of the Manicouagan impact: evidence from the Fundy basin. Geological Society of America Annual Meeting, Seattle, WA, 2–5 November 2003, Abstracts and Program, 35(6), Abst:167Google Scholar
  211. Tanner LH (2006) Synsedimentary seismic deformation in the Blomidon Formation (Norian-Hettangian), Fundy basin, Canada. New Mex Mus Nat Hist Sci Bull 37:35–42Google Scholar
  212. Tanner LH (2013) The enigmatic Quaco cobbles, Upper Triassic, Canadian Maritimes: deformation by tectonics or seismic shock? The Triassic System. New Mex Mus Natural Hist Sci Bull 61:577–581Google Scholar
  213. Tanner LH, Kyte FT (2005) Anomalous iridium enrichment at the Triassic–Jurassic boundary, Blomidon Formation, Fundy basin, Canada. Earth Planet Sci Lett 240(3–4):634–641. https://doi.org/10.1016/j.epsl.2005.09.050 CrossRefGoogle Scholar
  214. Tanner LH, Lucas SG (2015) The Triassic-Jurassic strata of the Newark Basin, USA: a complete and accurate astronomically-tuned timescale? Stratigraphy 12:47–65Google Scholar
  215. Tanner LH, Lucas SG, Chapman MG (2004) Assessing the record and causes of Late Triassic extinctions. Earth-Sci Rev 65(1–2):103–139. https://doi.org/10.1016/S0012-8252(03)00082-5 CrossRefGoogle Scholar
  216. Tanner LH, Smith DL, Allan A (2007) Stomatal response of swordfern to volcanogenic CO2 and SO2 from Kilauea volcano, Hawaii. Geophys Res Lett 34:L15807. https://doi.org/10.1029/2007GL030320 CrossRefGoogle Scholar
  217. Tanner LH, Kyte FT, Walker AE (2008) Multiple Ir anomalies in uppermost Triassic to Jurassic-age strata of the Blomidon Formation, Fundy basin, eastern Canada. Earth Planet Sci Lett 274(1–2):103–111. https://doi.org/10.1016/j.epsl.2008.07.013 CrossRefGoogle Scholar
  218. Tanner LH, Kyte FT, Richoz S, Krystyn L (2016) Distribution of iridium and associated geochemistry across the Triassic-Jurassic boundary in sections at Kuhjoch and Kendlbach, Northern Calcareous Alps, Austria. Palaeogeogr Palaeoclimat Palaecol 449:13–26. https://doi.org/10.1016/j.palaeo.2016.01.011 CrossRefGoogle Scholar
  219. Thackrey S, Walkden G, Kelley S, Parrish R, Horstwood M, Indares A, Stills J, Spray J (2008) Determining source of ejecta using heavy mineral provenance techniques; A Manicouagan distal ejecta case study. Proceedings of the 39th Lunar and Planetary Science Conference, 10–14 March 2008, League City, TX, Abst:1254.Google Scholar
  220. Thackrey S, Walkden G, Indares A, Horstwood A, Kelley S, Parrish R (2009) The use of heavy mineral correlation for determining the source of impact ejecta: a Manicouagan distal ejecta case study. Earth Planet Sci Lett 285(1–2):163–172. https://doi.org/10.1016/j.epsl.2009.06.010 CrossRefGoogle Scholar
  221. Thomas WA (2006) Tectonic inheritance at a continental margin. GSA Today 16(2):4–11CrossRefGoogle Scholar
  222. Thompson LM (2015) Shock attenuation constraints at Manicouagan: evidence from plagioclase and quartz in proximity to shatter cones. Bridging the Gap III: impact Cratering in Nature, Experiments and Modeling Conference, University of Freiburg, Germany, Abst: 1111Google Scholar
  223. Thompson LM, Spray JG (2013) The Manicouagan impact research program, and other Canadian impact crater studies. 76th Annual Meeting of the Meteoritical Society, 29 July–2 August 2013, Edmonton, AB, Abst: 5289Google Scholar
  224. Thompson LM, Spray JG (2014) Impact-related seismites at Manicouagan. Geological Association of Canada-Mineralogical Association of Canada Joint Annual Meeting, 21–23 May 2014, Fredericton, NB, Abst 37:268Google Scholar
  225. Thompson LM, Spray JG (2017) Dynamic interaction between impact melt and fragmented basement at Manicouagan: the suevite connection. Meteorit Planet Sci 52(7):1300–1329. https://doi.org/10.1111/maps.12889 CrossRefGoogle Scholar
  226. Tschudy RH, Pilmore CL, Orth CJ, Gilmore JS, Knight JD (1984) Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, western interior. Science 225(4666):130–1032. https://doi.org/10.1126/science.225.4666.1030 CrossRefGoogle Scholar
  227. Uno K, Yamashita D, Onoue T, Uehara D (2015) Paleomagnetism of Triassic bedded chert from Japan for determining the age of an impact ejecta layer deposited on peri-equatorial latitudes of the paleo-Pacific Ocean: a preliminary analysis. Phys Earth Planet Inter 249:59–67. https://doi.org/10.1016/j.pepi.2015.10.004 CrossRefGoogle Scholar
  228. deVries Klein G (1963) Boulder surface markings in Quaco Formation (Upper Triassic), St. Martin’s, New Brunswick, Canada. J Sediment Petrol 33(1):49–52. https://doi.org/10.1306/74D70DC1-2B21-11D7-8648000102C1865D CrossRefGoogle Scholar
  229. Wade JA, Brown DE, Fensome RA, Traverse A (1996) The Triassic-Jurassic Fundy Basin, Eastern Canada: regional setting, stratigraphy and hydrocarbon potential. Atl Geol 32(3):189–231. https://doi.org/10.4138/2088 CrossRefGoogle Scholar
  230. Waldron JWF, Barr SM, Park AF, White CE, Hibbard J (2015) Late Paleozoic strike-slip faults in Maritime Canada and their role in the reconfiguration of the northern Appalachian orogeny. Tectonics 34(8):1661–1684. https://doi.org/10.1002/2015TC003882 CrossRefGoogle Scholar
  231. Walkden G, Parker J (2008) The biotic effects of large bolide impacts: size vs time and place. Int Jour Astrobiol 7(3–4):209–215. https://doi.org/10.1017/S1473550408004266 CrossRefGoogle Scholar
  232. Walkden G, Parker J, Kelley S (2002) A Late Triassic impact ejecta layer in southwestern Britain. Science 298(5601):2185–2188. https://doi.org/10.1126/science.1076249 CrossRefGoogle Scholar
  233. Wartho, J-A, Schmieder M, van Soest MC, Buchner E, Hodges KV, Bezys RK, Reimold WU (2009). New (U–Th)/He zircon and apatite ages for the Lake Saint Martin impact structure (Manitoba, Canada) and implications for the Late Triassic multiple impact theory. Proceedings of the 40th Lunar and Planetary Science Conference, Woodlands, TX, 23–27 March 2009, Abst:2004.Google Scholar
  234. Wartho J-A, van Soest MC, Cooper FJ, Hodges, KV, Spray JG, Schmieder, M, Buchner E, Bezys RK, Reimold WU (2010) Updated (U-Th)/He Zircon Ages for the Lake Saint Martin impact structure (Manitoba, Canada) and implications for the Late Triassic multiple impact theory. Proceedings of the 41st Lunar and Planetary Science Conference, Woodlands, TX, 1–5 March 2010, Abst: 1930.Google Scholar
  235. Wartho J-A, van Soest MC, Cooper FJ, Spray JG, Schmieder M, Buchner E, King DT, Ukstins Peate I, Koeberl C, Reimold WU, Biren MB, Petruny LW, Hodges KV (2012) (U–Th)/He dating of impact structures—the big, the small, and the potential limitations. Meteorit Planet Sci 75(S1):A401Google Scholar
  236. Weems RE, Lucas SG (2015) A revision of the Norian conchostracan zonation in North America and its implications for Late Triassic North American tectonic history. In: Sullivan RM, Lucas SG (eds) Fossil Record 4. New Mex Mus Nat Hist Sci Bull 67:303–317Google Scholar
  237. Weems RJ, Tanner LH, Lucas SG (2016) Synthesis and revision of the lithostratigraphic groups and formations in the Upper Permian?–Lower Jurassic Newark Supergroup of eastern North America. Stratigraphy 13(2):111–153Google Scholar
  238. White RV, Saunders AD (2005) Volcanism, impact and mass extinctions: incredible or credible coincidences? Lithos 79(3–4):299–316. https://doi.org/10.1016/j.lithos.2004.09.016 CrossRefGoogle Scholar
  239. Whitehead J, Spray JG, Grieve RAF (2002) Origin of “toasted” quartz in terrestrial impact structures. Geology 30(5):431–434. https://doi.org/10.1130/0091-7613(2002)
  240. Whiteside JH, Olsen PE, Eglinton T, Brookfield ME, Sambrotto RN (2010) Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction. Proc Nat Acad Sci U S A 107(15): 6721–6725. https://doi.org/10.1073/pnas.1001706107
  241. Withjack MO, Schlische RW, Baum MS (2009) Extensional development of the Fundy rift basin, southeastern Canada. Geol J 44(6):631–651. https://doi.org/10.1002/gj.1186 CrossRefGoogle Scholar
  242. Withjack MO, Schlische RW, Olsen PE (2012) Development of the passive margin of eastern North America: Mesozoic rifting, igneous activity, and breakup. In: Bally AW, Roberts DG (eds) Principles of Phanerozoic Regional Geology, vol 1. Elsevier, Amsterdam, pp 301–335Google Scholar
  243. Wotzlaw J-F, Guex J, Bartolini A, Gallet Y, Krystyn L, McRoberts CA, Taylor D, Schoene B, Schaltegger U (2014) Towards accurate numerical calibration of the Late Triassic: high-precision U-Pb geochronology constraints on the duration of the Rhaetian. Geology 42(7):571–574. https://doi.org/10.1130/G35612.1 CrossRefGoogle Scholar
  244. Wrobel KE, Schultz PH (2003) The effect of rotation on the deposition of terrestrial impact ejecta. Proceedings of the 34th Lunar and Planetary Science Conference, League City, TX, 17–21 March 2003, Abst:1190Google Scholar
  245. Wünnemann K, Zhu M-H, Stöffler D (2016) Impacts into quartz sand: crater formation, shock metamorphism, and ejecta distribution in laboratory experiments and numerical models. Meteorit Planet Sci 51(10):1762–1794. https://doi.org/10.1111/maps.12710 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Michael J. Clutson
    • 1
  • David E. Brown
    • 2
  • Lawrence H. Tanner
    • 3
  1. 1.HalifaxCanada
  2. 2.Canada-Nova Scotia Offshore Petroleum BoardHalifaxCanada
  3. 3.Department of Biological and Environmental SciencesLe Moyne CollegeSyracuseUSA

Personalised recommendations