Advertisement

The Central Atlantic Magmatic Province (CAMP): A Review

  • Andrea Marzoli
  • Sara Callegaro
  • Jacopo Dal Corso
  • Joshua H. F. L. Davies
  • Massimo Chiaradia
  • Nassrrdine Youbi
  • Hervé Bertrand
  • Laurie Reisberg
  • Renaud Merle
  • Fred Jourdan
Chapter
Part of the Topics in Geobiology book series (TGBI, volume 46)

Abstract

The Central Atlantic magmatic province (CAMP) consists of basic rocks emplaced as shallow intrusions and erupted in large lava flow fields over a land surface area in excess of 10 million km2 on the supercontinent Pangaea at about 201 Ma. The peak activity of the CAMP straddled the Triassic-Jurassic boundary and probably lasted less than 1 million years, while late activity went on for several Ma more into the Sinemurian. Emission of carbon and sulfur from the CAMP magmas and from intruded sediments probably caused extinctions at the end-Triassic. Intrusive rocks are represented by isolated dykes up to 800 km-long, by dense dyke swarms and by extremely voluminous sills and a few layered intrusions. Lava fields were erupted as short-lived pulses and can be traced over distances of several hundred km within sedimentary basins. They consist of either compound or simple pahoehoe flows. Globally, the intrusive and effusive rocks are estimated to represent an original magmatic volume of at least 3 million km3. Herein we subdivide the CAMP basalts for the first time into six main geochemical groups, five represented by low-Ti and one by high-Ti rocks. Except for one low-Ti group, which is ubiquitous throughout the entire province, all other groups occur in relatively restricted areas and their compositions probably reflect contamination from the local continental lithosphere. Major and trace elements and Sr-Nd-Pb-Os isotopic compositions indicate that the basaltic magmas had an enriched composition compared to Mid-Ocean Ridge basalts and different from Atlantic Ocean Island basalts. The enriched composition of CAMP basalts is only in part attributable to crustal contamination. It also probably requires subducted upper and lower continental crust material that enriched the shallow upper mantle from which CAMP basalts were generated. A contribution from a deep mantle-plume is not required by geochemical and thermometric data, but it remains unclear what other possible heat source caused mantle melting on the scale required to form CAMP.

Keywords

Large igneous province End-Triassic Radioisotopic ages Mantle melting Volcanic Thermogenic gases 

Notes

Acknowledgements

This work is a contribution to the following collaborative research projects: (i) PICS, CNRS (France)-CNRST (Morocco) to HB and NY, (ii) CNRi (Italy)-CNRST (Morocco) to AM and NY and (iii) FCT (Portugal)-CNRST (Morocco) to NY, (iv) PRIN (20158A9CBM) CARIPARO (Eccellenza 2008) and Progetto di Ateneo 2013 (Università di Padova, CPDA132295/13; all to AM). JDC acknowledges the Hanse-Wissenschaftskolleg Institute for Advanced Study (Delmenhorst, Germany) for financial support. We acknowledge also the precious help from numerous colleagues all around the world, including: P.R. Renne, E.M. Piccirillo, M. Ernesto, A. De Min, G. Bellieni, S. Cirilli, E. Vasconcellos, T. Sempere, R. Weems, L. Tanner, J. Puffer, G. McHone, D. Kontak, M. Bensalah, F. Medina, A. Mahmoudi, C. Chabou, A. Meddah, L. Martins, J. Madeira, J. Mata, and C.M. Meyzen. R. Weems and J. Puffer provided very detailed and helpful reviews, which substantially improved the original text. This work would not have been possible without the careful editorial work of L. Tanner.

References

  1. Alibert C (1985) A Sr-Nd isotope and REE study of Late Triassic dolerites from the Pyrenees (France) and the Messejana Dyke (Spain and Portugal). Ear Planet Sci Lett 73:81–90CrossRefGoogle Scholar
  2. Azambre B, Rossy M, Elloy R (1981) Les dolérites triasiques (ophites) des Pyrénées: données nouvelles fournies par les sondages pétroliers en Aquitaine. Bull Societè Géol France 23:263–269CrossRefGoogle Scholar
  3. Azambre B, Rossy M, Lago M (1987) Caractéristiques pétrologiques des dolérites tholéiitiques d’âge triasique (ophites) du domaine pyrénéen. Bull Minéralog 110:379–396Google Scholar
  4. Bachan A, Payne C (2016) Modelling the impact of pulsed CAMP volcanism on pCO2 and δ13C across the Triassic–Jurassic transition. Geol Mag 153:252–270CrossRefGoogle Scholar
  5. Baksi AK, Archibald DA (1997) Mesozoic igneous activity in the Maranhão province, northern Brazil, 40Ar/39Ar evidence for separate episodes of basaltic magmatism. Ear Planet Sci Lett 151:139–153CrossRefGoogle Scholar
  6. Barry PH, Hilton DR, Füri E, Halldórsson SA, Grönvold K (2014) Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes. Geochim Cosmochim Acta 134:74–99CrossRefGoogle Scholar
  7. Bartolini A, Guex J, Spangenberg J, Taylor D, Schoene B, Schaltegger U, Atudorei V (2012) Disentangling the Hettangian carbon isotope record: implications for the aftermath of the end-Triassic mass extinction. Geochem Geophys Geosyst 13:1–11CrossRefGoogle Scholar
  8. Bellieni G, Piccirillo EM, Cavazzini G, Petrini R, Comin-Chiaramonti P, Nardy AJR, Civetta L, Melfi AJ, Zantedeschi P (1990) Low- and High-TiO2 Mesozoic tholeiitic magmatism of the Maranhao basin (NE-Brazil): K/Ar age, geochemistry, petrology, isotope characteristics and relationships with Mesozoic low- and high-TiO2 flood basalts of the Paraná basin (SE-Brazil). N Jb Mineralog Abh 162:1–33Google Scholar
  9. Bertrand H (1987) Le magmatisme tholéiitique continental de la marge ibérique, précurseur de l’ouverture de l’Atlantique central: les dolérites du dyke de Messejana-Plasencia (Portugal-Espagne). C R Acad Sci 304:215–220Google Scholar
  10. Bertrand H (1991) The Mesozoic tholeiitic province of Northwest Africa: A volcanotectonic record of the early opening of Central Atlantic. In: Kampuzu AB, Lulaba RT (eds) Magmatism in extensional settings: The Phanerozoic African Plate, Springer, pp. 147–188Google Scholar
  11. Bertrand H, Coffrant D (1977) Geochemistry of tholeiites from eastern North American margin; correlation with Morocco. Contr Min Petrol 63:65–74CrossRefGoogle Scholar
  12. Bertrand H, Dostal J, Dupuy C (1982) Geochemistry of early Mesozoic tholeiites from Morocco. Ear Planet Sci Lett 58:225–239CrossRefGoogle Scholar
  13. Bertrand H, Fornari M, Marzoli A, García-Duarte R, Sempere T (2014) The Central Atlantic Magmatic Province extends into Bolivia. Lithos 188:33–43CrossRefGoogle Scholar
  14. Beutel EK, Nomade S, Fronabarger AK, Renne PR (2005) Pangaea’s complex breakup: A new rapidly changing stress field model. Ear Planet Sci Lett 236:471–485CrossRefGoogle Scholar
  15. Black BA, Manga M (2017) Volatiles and the tempo of flood basalt magmatism. Ear Planet Sci Lett 458:130–140CrossRefGoogle Scholar
  16. Blackburn TJ, Olsen PE, Bowring SA, Mclean NM, Kent DV, Puffer J, McHone G, Rasbury ET, Et-Touhami M (2013) Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340:941–945CrossRefGoogle Scholar
  17. Block KA, Steiner JC, Puffer JH, Jones KM, Goldstein SL (2015) Evolution of late stage differentiates in the Palisades Sill, New York and New Jersey. Lithos 230:121–132CrossRefGoogle Scholar
  18. Bondre NR, Duraiswami RA, Dole G (2004) Morphology and emplacement of flows from the Deccan volcanic province, India. Bull Volcanol 66:29–45CrossRefGoogle Scholar
  19. Burgess SD, Bowring SA, Fleming TH, Elliot DH (2015) High-precision geochronology links the Ferrar large igneous province with early-Jurassic ocean anoxia and biotic crisis. Ear Planet Sci Lett 415:90–99CrossRefGoogle Scholar
  20. Burke K, Steinberger B, Torsvik TH, Smethurst MA (2008) Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary. Ear Planet Sci Lett 265:49–60CrossRefGoogle Scholar
  21. Callegaro S, Rigo M, Chiaradia M, Marzoli A (2012) Latest Triassic marine Sr isotopic variations, possible causes and implications. Terra Nova 24:130–135CrossRefGoogle Scholar
  22. Callegaro S, Marzoli A, Bertrand H, Chiaradia M, Reisberg L, Meyzen C, Bellieni G, Weems RE, Merl R (2013) Upper and lower crust recycling in the source of CAMP basaltic dykes from southeastern North America. Ear Planet Sci Lett 376:186–199CrossRefGoogle Scholar
  23. Callegaro S, Rapaille C, Marzoli A, Bertrand H, Chiaradia M, Reisberg L, Bellieni G, Martin L, Madeira J, Mata J, Youbi N, De Min A, Azevedo MR, Bensalah MK (2014a) Enriched mantle source for the Central Atlantic magmatic province: new supporting evidence from Southwestern Europe. Lithos 188:15–32CrossRefGoogle Scholar
  24. Callegaro S, Baker DF, DeMin A, Marzoli A, Geraki K, Nestola F, Viti C (2014b) Microanalyses link sulfur from large igneous provinces and Mesozoic mass extinctions. Geol 42:895–898CrossRefGoogle Scholar
  25. Callegaro S, Marzoli A, Bertrand H, Blichert-Toft J, Reisberg L, Cavazzini G, Jourdan F, Davies J, Parisio L, Bouchet RAP, Schaltegger U, Chiaradia M (2017) Geochemical constraints provided by the Freetown Layered Complex (Sierra Leone) on the origin of high-Ti tholeiitic CAMP magmas. J Petrol (in press)Google Scholar
  26. Campbell IH, Griffiths RW (1990) Implications of mantle plume structure for the evolution of flood basalts. Ear Planet Sci Lett 99:79–93CrossRefGoogle Scholar
  27. Caroff M, Bellon H, Chauris L, Carro J-P, Chevrier S, Gardinier A, Cotton J, Le Moan Y, Neidhart Y (1995) Magmatisme fissural triasico-liasique dans l’ouest du Masif armoricain (France): pétrologie, géochimie, age et modalités de la mise en place. Can J Ear Sci 32:1921–1936CrossRefGoogle Scholar
  28. Cebriá JM, López-Ruiz J, Doblas M, Martíns LT, Munha J (2003) Geochemistry of the Early Jurassic Messejana-Plasencia dyke (Portugal-Spain); Implications on the origin of the Central Atlantic Magmatic Province. J Petrol 44:547–568CrossRefGoogle Scholar
  29. Chabou MC, Bertrand H, Sebaï A (2010) Geochemistry of the Central Atlantic Magmatic Province (CAMP) in south-western Algeria. J Afr Ear Sci 58:211–219CrossRefGoogle Scholar
  30. Chalokwu CI (2001) Petrology of the Freetown layered complex, Sierra Leone: part II. Magma evolution and crystallization conditions. J Afr Ear Sci 32:519–554CrossRefGoogle Scholar
  31. Coffin MF, Eldholm O (1994) Large Igneous Provinces: crustal structure, dimensions and external consequences. Rev Geophys 32:1–36Google Scholar
  32. Cohen AS, Coe AL (2002) New geochemical evidence for the onset of volcanism in the Central Atlantic magmatic province and environmental change at the Triassic-Jurassic boundary. Geol 30:267–270CrossRefGoogle Scholar
  33. Coltice N, Phillips BR, Bertrand H, Ricard Y, Rey P (2007) Global warming of the mantle at the origin of flood basalts over supercontinents. Geol 35:391–394CrossRefGoogle Scholar
  34. Condon DJ, Schoene B, McLean NM, Bowring SA, Parrish RR (2015) Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochim Cosmochim Acta 164:464–480CrossRefGoogle Scholar
  35. Dal Corso J, Marzoli A, Tateo F, Jenkyns HC, Bertrand H, Youbi N, Mahmoudi A, Font E, Buratti N, Cirilli S (2014) The dawn of CAMP volcanism and its bearing on the end-Triassic carbon cycle disruption. J Geol Soc Lond 171:153–164CrossRefGoogle Scholar
  36. Dale CW, Pearson DG, Starkey NA, Stuart FM, Ellam RM, Larsen LM, Fitton JG, Macpherson CG (2009) Osmium isotopes in Baffin Island and West Greenland picrites: Implications for the 187Os/188Os composition of the convecting mantle and the nature of high 3He/4He mantle. Ear Planet Sci Lett 278:267–277CrossRefGoogle Scholar
  37. Dalrymple GB, Grommé CS, White RW (1975) Potassium-Argon Age and Paleomagnetism of Diabase Dikes in Liberia: Initiation of Central Atlantic Rifting. Geol Soc Am Bull 86:399–411CrossRefGoogle Scholar
  38. Davies JHFL, Marzoli A, Bertrand H, Youbi N, Ernesto M, Schaltegger U (2017) End-Triassic mass extinction started by intrusive CAMP activity. Nat Commun. https://doi.org/10.1038/NCOMMS15596
  39. Deckart K, Féraud G, Bertrand H (1997) Age of Jurassic continental tholeiites of French Guyana, Surinam and Guinea: Implications for the initial opening of the Central Atlantic Ocean. Ear Planet Sci Lett 150:205–220CrossRefGoogle Scholar
  40. Deckart K, Bertrand H, Liégeois J-P (2005) Geochemistry and Sr, Nd, Pb isotopic composition of the Central Atlantic magmatic Province (CAMP) in Guyana and Guinea. Lithos 82:289–314CrossRefGoogle Scholar
  41. Deenen MHL, Ruhl M, Bonis NR, Krijgsman W, Kuerschner WN, Reitsma M, van Bergen MJ (2010) A new chronology for the end-Triassic mass extinction. Ear Planet Sci Lett 291:113–125CrossRefGoogle Scholar
  42. Deenen MHL, Krijgsman W, Ruhl M (2011) The quest for chron E23r at Partridge Island, Bay of Fundy, Canada: CAMP emplacement postdates the end-Triassic extinction event at the North American craton. Can J Ear Sci 48:1282–1291CrossRefGoogle Scholar
  43. De Min A, Piccirillo EM, Marzoli A, Bellieni G, Renne PR, Ernesto M, Marques LS (2003) The Central Atlantic Magmatic Province (CAMP) in Brazil: Petrology, geochemistry, 40Ar/39Ar ages, paleomagnetism and geodynamic implications. In: Hames W, McHone G, Renne PR, Ruppel C (eds), The Central Atlantic magmatic province: Insights from fragments of Pangaea. Am Geophys Un Geophys Monogr 136:91–128Google Scholar
  44. Dickens GR, O’Neill JR, Rea DK, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanogr 10:965–971CrossRefGoogle Scholar
  45. Dorais MJ, Tubrett M (2008) Identification of a subduction zone component in the Higganum dike, Central Atlantic Magmatic Province: A LA-ICPMS study of clinopyroxene with implications for flood basalt petrogenesis. Geochem Geophys Geosyst 9:Q10005. https://doi.org/10.1029/2008GC002079 CrossRefGoogle Scholar
  46. Dostal J, Dupuy C (1984) Geochemistry of the North Mountain Basalts (Nova Scotia, Canada). Chem Geol 45:245–261CrossRefGoogle Scholar
  47. Dunning GR, Hodych JP (1990) U-Pb zircon and baddeleyite ages for the Palisades and Gettysburg sills of the northeastern United States: Implications for the age of the Triassic-Jurassic boundary. Geol 18:795–798CrossRefGoogle Scholar
  48. Dupuy C, Marsh J, Dostal J, Michard A, Testa S (1988) Asthenospheric sources for Mesozoic dolerites from Liberia (Africa): Trace element and isotopic evidence. Ear Planet Sci Lett 87:100–110CrossRefGoogle Scholar
  49. El Hachimi H, Youbi N, Madeira J, Bensalah MK, Martins L, Mata J, Bertrand H, Marzoli A, Medina F, Munhá J, Bellieni J, Mahmoudi A, Ben Abbou M, Assafar H (2011) Morphology, internal architecture, and emplacement mechanisms of lava flows from the Central Atlantic Magmatic Province (CAMP) of Argana basin (Morocco). In: Van Hinsbergen DJJ, Buiter S, Torsvik TH, Gaina C, Webb S (eds), Out of Africa—a synopsis of 3.8 Ga of Earth history. Geol Soc Lond Spec Publ 357:167–193Google Scholar
  50. Ernst RE, Youbi N (2017) How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr Palaeoclimatol Palaeoecol 478:30–52CrossRefGoogle Scholar
  51. Fodor RV, Sial AN, Mukasa SB, Mckee EH (1990) Petrology. isotope characteristics and K-Ar ages of the Maranhão, northern Brazil, Mesozoic basalt province. Contrib Mineral Petrol 104:555–567CrossRefGoogle Scholar
  52. Gannoun A, Burton KW, Parkinson IJ, Alard O, Schiano P, Thomas LE (2007) The scale and origin of the osmium isotope variations in mid-ocean ridge basalts. Ear Planet Sci Lett 259:541–556CrossRefGoogle Scholar
  53. Gerlach TM, Taylor BE (1990) Carbon isotope constraints on degassing of carbon dioxide from Kilauea Volcano. Geochim Cosmochim Acta 54:2051–2058CrossRefGoogle Scholar
  54. Ghiorso MS, Sack RO (1995) Chemical transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212CrossRefGoogle Scholar
  55. Grossman JN, Gottfried D, Froelich J (1991) Geochemical data for Jurassic diabase associated with early Mesozoic rift basins in the eastern United States. US Geol Surv Open File Rep 91–322Google Scholar
  56. Guex J, Bartolini A, Atudorei V, Taylor D (2004) High-resolution ammonite and carbon isotope stratigraphy across the Triassic–Jurassic boundary at New York Canyon (Nevada). Ear Planet Sci Lett 225:29–41CrossRefGoogle Scholar
  57. Hailwood EA, Mitchell JG (1971) Palaeomagnetism and radiometric dating results from Jurassic intrusions in South Morocco. Geophys J Roy Astronom Soc 24:351–364CrossRefGoogle Scholar
  58. Hames WE, Renne PR, Ruppel C (2000) New evidence for geologically instantaneous emplacement of earliest Jurassic Central Atlantic magmatic province basalts on the North American margin. Geol 28:859–862CrossRefGoogle Scholar
  59. Hart SR (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nat 309:753–757CrossRefGoogle Scholar
  60. Herzberg C, Gazel E (2009) Petrological evidence for secular cooling in mantle plumes. Nat 458:619–622CrossRefGoogle Scholar
  61. Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher CM, Fitton JG, Cheadle MJ, Saunders AD (2007) Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochem Geophys Geosyst 8:Q02006. https://doi.org/10.1029/2006GC001390 CrossRefGoogle Scholar
  62. Hesselbo SP, Robinson SA, Surlyk F, Piasecki S (2002) Terrestrial and marine mass extinction at the Triassic-Jurassic boundary synchronized with initiation of massive volcanism. Geol 30:251–254CrossRefGoogle Scholar
  63. Hill RI (1991) Starting plumes and continental break-up. Ear Planet Sci Lett 104:398–416CrossRefGoogle Scholar
  64. Hodych JP, Dunning GR (1992) Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geol 20:51–54CrossRefGoogle Scholar
  65. Hole MJ (2015) The generation of continental flood basalts by decompression melting of internally heated mantle. Geol 43:311–314CrossRefGoogle Scholar
  66. Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106:351–370CrossRefGoogle Scholar
  67. Janney PE, Castillo PR (2001) Geochemistry of the oldest Atlantic oceanic crust suggests mantle plume involvement in the early history of the Central Atlantic Ocean. Ear Planet Sci Lett 192:291–302CrossRefGoogle Scholar
  68. Jennings ES, Gibson SA, Maclennan J, Heinonen IS (2017) Deep mixing of mantle melts beneath continental flood basalt provinces: Constraints from olivine-hosted melt inclusions in primitive magmas. Geochim Cosmochim Acta 196:36–57CrossRefGoogle Scholar
  69. Jerram DA, Widdowson M (2005) The anatomy of Continental Flood Basalt Provinces: geological constraints on the processes and products of flood volcanism. Lithos 79:385–405CrossRefGoogle Scholar
  70. Jourdan F, Marzoli A, Bertrand H, Cosca M, Fontignie D (2003) The northernmost CAMP: 40Ar/39Ar Age, Petrology and Sr-Nd-Pb Isotope Geochemistry of the Kerforne Dike, Brittany, France. In: Hames WE, McHone JG, Renne, PR, Ruppel C (eds), The Central Atlantic magmatic province: Insights from fragments of Pangaea. Am Geophys Un Geophys Monogr 136: 209–226Google Scholar
  71. Jourdan F, Bertrand H, Schärer U, Blichert-Toft J, Féraud G, Kampunzu AB (2007) Major and Trace element and Sr, Nd, Hf and Pb isotope compositions of the Karoo Large Igneous Province, Botswana-Zimbabwe: lithosphere vs. mantle plume contribution. J Petrol 48:1043–1077CrossRefGoogle Scholar
  72. Jourdan F, Féraud G, Bertrand H, Watkeys MK, Renne PR (2008) The 40Ar/39Ar ages of the sill complex of the Karoo large igneous province: Implications for the Pliensbachian-Toarcian climate change. Geochem Geophys Geosyst 9:Q06009CrossRefGoogle Scholar
  73. Jourdan F, Marzoli A, Bertrand H, Cirilli S, Tanner LH, Kontak DJ, McHone G, Renne PR, Bellieni G (2009) 40Ar/39Ar ages of CAMP in North America: implications for the Triassic-Jurassic boundary and the 40K decay constant bias. Lithos 110:167–180CrossRefGoogle Scholar
  74. Klein EL, Angélica RS, Harris C, Jourdan F, Babinski M (2013) Mafic dykes intrusive into Pre-Cambrian rocks of the São Luís cratonic fragment and Gurupi Belt (Parnaíba Province), north–northeastern Brazil: Geochemistry, Sr–Nd–Pb–O isotopes, 40Ar/39Ar geochronology, and relationships to CAMP magmatism. Lithos 172–173:222–242CrossRefGoogle Scholar
  75. Knight KB, Nomade S, Renne PR, Marzoli A, Bertrand H, Youbi H (2004) The Central Atlantic Magmatic Province at the Triassic-Jurassic boundary: paleomagnetic and 40Ar/39Ar evidence from Morocco for brief, episodic volcanism. Ear Planet Sci Lett 228:143–160CrossRefGoogle Scholar
  76. Kontak DJ (2008) On the edge of CAMP: Geology and volcanology of the Jurassic North Mountain Basalt, Nova Scotia. In: Dostal J, Greenough JD, Kontak DJ (eds) Rift-related magmatism. Lithos 101:74–101Google Scholar
  77. Labails C, Olivet JL, Aslanian D, Roest WR (2010) An alternative early opening scenario for the Central Atlantic Ocean. Ear Planet Sci Lett 297:355–368CrossRefGoogle Scholar
  78. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750CrossRefGoogle Scholar
  79. Lesher CE, Cashman KV, Mayfield JD (1999) Kinetic controls on crystallization of Tertiary North Atlantic basalt and implications for the emplacement and cooling history of lava at site 989, southeast Greenland rifted margin. In: Larsen HC, Duncan RA, Allan JF, Brooks K (eds). Proc Ocean Drill Program Sci Results 163:135–148Google Scholar
  80. Lindström S, van de Schootbrugge B, Dybkjær K, Pedersen GK, Fiebig J, Nielsen LH, Richoz S (2012) No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass-extinction. Geol 40:531–534CrossRefGoogle Scholar
  81. Lindström S, van de Schootbrugge B, Hansen KH, Pedersen GK, Alsen P, Thibault N, Dybkjær K, Bierrum CJ, Nielsen LH (2017) A new correlation of Triassic–Jurassic boundary successions in NW Europe, Nevada and Peru, and the Central Atlantic Magmatic Province: A time-line for the end-Triassic mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 478:80–102CrossRefGoogle Scholar
  82. Manspeizer W, Puffer JH, Cousminer HL (1978) Separation of Morocco and eastern North America: a Triassic-Liassic stratigraphic record. Geol Soc Am Bull 89:901–920Google Scholar
  83. Martins LT, Madeira J, Youbi N, Munhá J, Mata J, Kerrich R (2008) Rift-related magmatism of the Central Atlantic magmatic province in Algarve, Southern Portugal. Lithos 101:102–124CrossRefGoogle Scholar
  84. Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, DeMin A (1999) Extensive 200 million years old continental flood basalts from the Central Atlantic Magmatic Province. Sci 248:616–618CrossRefGoogle Scholar
  85. Marzoli A, Bertrand H, Knight KB, Cirilli S, Buratti N, Vérati C, Nomade S, Renne PR, Youbi N, Martini R, Allenbach K, Neuwerth R, Rapaille C, Zaninetti L, Bellieni G (2004) Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis. Geol 32:973–976CrossRefGoogle Scholar
  86. Marzoli A, Bertrand H, Knight K, Cirilli S, Nomade S, Renne P, Vérati C, Youbi N, Martini R, Bellieni G (2008) Comments on “Synchrony between the Central Atlantic magmatic province and the Triassic–Jurassic mass-extinction event?” by Whiteside et al. (2007). Palaeogeogr Palaeoclimatol Palaeoecol 262:189–193CrossRefGoogle Scholar
  87. Marzoli A, Jourdan F, Puffer JH, Cuppone T, Tanner LH, Weems RE, Bertrand H, Cirilli S, Bellieni G, De Min A (2011) Timing and duration of the Central Atlantic magmatic province in the Newark and Culpeper basins, eastern USA. Lithos 122:175–188CrossRefGoogle Scholar
  88. Marzoli A, Jourdan F, Bussy F, Chiaradia M, Costa F (2014) Petrogenesis of tholeiitic basalts from the Central Atlantic magmatic province as revealed by mineral major and trace elements and Sr isotopes. Lithos 188:44–59CrossRefGoogle Scholar
  89. Marzoli A, Davies JHFL, Youbi N, Merle R, Dal Corso J, Dunkley DJ, Fioretti AM, Bellieni G, Medina F, Wotzlaw J-F, McHone G, Font E, Bensalah MK (2017) Proterozoic to Mesozoic evolution of North-West Africa and Peri-Gondwana microplates: Detrital zircon ages from Morocco and Canada. Lithos 278-281:229–239CrossRefGoogle Scholar
  90. May PR (1971) Pattern of Triassic-Jurassic diabase dikes around the North Atlantic in the context of pre-drift position of the continents. Geol Soc Am Bull 82:1285–1291CrossRefGoogle Scholar
  91. McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic–Jurassic boundary. Sci 285:1386–1390CrossRefGoogle Scholar
  92. McHone JG (1996) Broad-terrane Jurassic flood basalts across northeastern North America. Geol 24:319–322CrossRefGoogle Scholar
  93. McHone JG (2000) Non-plume magmatism and rifting during the opening of the central Atlantic Ocean. Tectonophys 316:287–296CrossRefGoogle Scholar
  94. McHone JG (2003) Volatile emissions from Central Atlantic Magmatic Province basalts: mass assumptions and environmental consequences. In: Hames WE, McHone JG, Renne PR, Ruppel C (eds) The Central Atlantic magmatic province: insights from fragments of Pangaea. Am Geophys Un Geophys Monogr 136:241–254Google Scholar
  95. McHone JG, Anderson DL, Beutel EK, Fialko YA (2005) Giant dikes, rifts, flood basalts and plate tectonics: a contention of mantle models. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes and paradigms. Geol Soc Am Spec Vol 388:401–420Google Scholar
  96. Meddah A, Bertrand H, Elmi S (2007) La province magmatique de l’Atlantique central dans le bassin des Ksour (Atlas saharien, Algérie). Compt Rend Geosci 339:24–30CrossRefGoogle Scholar
  97. Meddah A, Bertrand H, Seddiki A, Tabeliouna M (2017) The Triassic-Liassic volcanic sequence and rift evolution in the Saharan Atlas basins (Algeria). Eastward vanishing of the Central Atlantic magmatic province. Geol Acta 15:11–23Google Scholar
  98. Meisel T, Walker RJ, Irving AJ, Lorand J-P (2001) Osmium isotopic compositions of mantle xenoliths: A global perspective. Geochim Cosmochim Acta 65:1311–1323CrossRefGoogle Scholar
  99. Melluso L, Mahoney JJ, Dallai L (2006) Mantle sources and crustal input as recorded in high-Mg Deccan Traps basalts of Gujarat (India). Lithos 89:259–274CrossRefGoogle Scholar
  100. Merle R, Marzoli A, Bertrand H, Reisberg L, Verati C, Zimmermann C, Chiaradia M, Bellieni G, Ernesto M (2011) 40Ar/39Ar ages and Sr-Nd-Pb-Os geochemistry of CAMP tholeiites from Western Maranhão basin (NE Brazil). Lithos 122:137–151CrossRefGoogle Scholar
  101. Merle R, Marzoli A, Reisberg L, Bertrand H, Nemchin A, Chiaradia M, Callegaro S, Jourdan F, Bellieni G, Kontak D, Puffer J, McHone JG (2014) Sr, Nd, Pb and Os isotope systematics of CAMP tholeiites from Eastern North America (ENA): Evidence of a subduction-enriched mantle source. J Petrol 55:133–180CrossRefGoogle Scholar
  102. Milani EJ, Zalàn PV (1999) An outline of the geology and petroleum systems of the Paleozoic interior basins of South America. Episodes 22:199–205Google Scholar
  103. Montes-Lauar CR, Pacca IG, Melfi AJ, Piccirillo EM, Bellieni G, Petrini R, Rizzieri R (1994) The Anarí and Tapirapuá Jurassic formations, western Brazil; paleomagnetism, geochemistry and geochronology. Ear Planet Sci Lett 128:357–371CrossRefGoogle Scholar
  104. Morgan WJ (1983) Hotspot tracks and the early rifting of the Atlantic. Tectonophys 94:123–139CrossRefGoogle Scholar
  105. Ndiaye M, Ngom PM, Gorin G, Villeneuve M, Sartori M, Medou J (2016) A new interpretation of the deep-part of Senegal-Mauritanian Basin in the Diourbel-Thies area by integrating seismic, magnetic, gravimetric and borehole data: Implication for petroleum exploration. J Afr Ear Sci 121:330–341CrossRefGoogle Scholar
  106. Nomade S, Pouclet A, Chen Y (2002) The French Guyana doleritic dykes: Geochemical evidence of three populations and new data for the Jurassic Central Atlantic magmatic province. J Geodynam 34:595–614CrossRefGoogle Scholar
  107. Nomade S, Knight K, Beutel E, Renne PR, Verati C, Feraud G, Marzoli A, Youbi N, Bertrand H (2007) The chronology of CAMP: relevance for the central Atlantic rifting processes and the Triassic-Jurassic biotic crisis. Palaeogeogr Palaeoclimatol Palaeoecol 244:326–344CrossRefGoogle Scholar
  108. Oh J, Austin JA Jr, Phillips JD, Coffin MF, Stoffa PL (1995) Seaward-dipping reflectors offshore the southeastern United States: Seismic evidence for extensive volcanism accompanying sequential formation of the Carolina through and Blake Plateau basin. Geol 23:9–12CrossRefGoogle Scholar
  109. Pálfy J, Demény A, Haas J, Carter ES, Görög Á, Halász D, Oravecz-Scheffer A, Hetényi M, Márton E, Orchard MJ, Ozsvárt P, Vető I, Zajzon N (2007) Triassic–Jurassic boundary events inferred from integrated stratigraphy of the Csovár section, Hungary. Palaeogeogr Palaeoclimatol Palaeoecol 244:11–33CrossRefGoogle Scholar
  110. Paris G, Donnadieu Y, Beaumont V, Fluteau F, Goddéris Y (2016) Geochemical consequences of intense pulse-like degassing during the onset of the Central Atlantic Magmatic Province. Palaeogeogr Palaeoclimatol Palaeoecol 441:74–82CrossRefGoogle Scholar
  111. Parisio L, Jourdan F, Marzoli A, Melluso L, Sethna S, Bellieni G (2016) 40Ar/39Ar ages of alkaline and tholeiitic rocks from the northern deccan traps: Implications for magmatic processes and the K–Pg boundary. J Geol Soc Lond 173:679–688CrossRefGoogle Scholar
  112. Peate DW (1997) The Paraná-Etendeka province. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: Continental, oceanic, and planetary flood volcanism. Am Geophys Un Geophys Monogr 100:217–246Google Scholar
  113. Pegram WJ (1990) Development of continental lithospheric mantle as reflected in the chemistry of the Mesozoic Appalachian tholeiites, USA. Ear Planet Sci Lett 97:316–331CrossRefGoogle Scholar
  114. Philpotts AR (1998) Nature of a flood-basalt-magma reservoir based on the compositional variation in a single flood basalt flow and its feeder dike in the Mesozoic Hartford Basin, Connecticut. Contrib Mineral Petrol 133:69–82CrossRefGoogle Scholar
  115. Philpotts AR, Asher PM (1993) Wallrock melting and reaction effects along the Higganum diabase dyke in Connecticut: Contamination of a continental flood basalt feeder. J Petrol 34:1029–1058CrossRefGoogle Scholar
  116. Philpotts AR, Reichenbach I (1985) Differentiation of Mesozoic basalts of the Hartford basin, Connecticut. Geol Soc Am Bull 96:1131–1139CrossRefGoogle Scholar
  117. Puffer JH (1992) Eastern North American flood basalts in the context of the incipient breakup of Pangaea. In: Puffer JH, Ragland PC (eds) Eastern North American Mesozoic magmatism. Geol Soc Am Spec Pap 268:95–119Google Scholar
  118. Puffer JH (2001) Contrasting high field strength element contents of continental flood basalts from plume versus reactivated-arc sources. Geol 29:675–678CrossRefGoogle Scholar
  119. Puffer JH, Student JJ (1992) The volcanic structure and eruptive style of the Watchung Basalts, New Jersey. In: Puffer JH, Ragland PC (eds) Eastern North American Mesozoic magmatism. Geol Soc Am Spec Pap 268:261–279Google Scholar
  120. Puffer JH, Volkert RA (2001) Pegmatoid and gabbroid layers in Jurassic Preakness and Hook Mountain basalts. J Geol 109:585–601CrossRefGoogle Scholar
  121. Puffer JH, Geiger FJ, Caamano EJ (1982) The geochemistry of the Mesozoic igneous rocks of Rockland County, New York. Northeast Geol 4:121–130Google Scholar
  122. Puffer JH, Block KA, Steiner JC (2009) Transmission of flood basalts through a shallow crustal sill and the correlations of the sill layers with extrusive flows: the Palisades intrusive system and the basalts of the Newark Basin, New Jersey, USA. J Geol 117:139–155CrossRefGoogle Scholar
  123. Raup DM, Sepkoski JJ (1982) Mass Extinctions in the Marine Fossil Record. Sci 215:1501–1503CrossRefGoogle Scholar
  124. Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349–5367CrossRefGoogle Scholar
  125. Renne PR, Balco G, Ludwig KR, Mundil R, Min K (2011) Response to the comment by W.H. Schwarz et al. on “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by P.R. Renne et al. (2010). Geochim Cosmochim Acta 75:5097–5100CrossRefGoogle Scholar
  126. Renne PR, Sprain CJ, Richards MA, Self S, Vanderkluysen L, Pande K (2015) State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Sci 350:76–78CrossRefGoogle Scholar
  127. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  128. Ruhl M, Kürschner WM, Krystyn L (2009) Triassic–Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria). Ear Planet Sci Lett 281:169–187CrossRefGoogle Scholar
  129. Ruhl M, Bonis NR, Reichard GL, Sinninghe Danste JS, Kurschner WM (2011) Atmospheric carbon injection linked to end-Triassic mass extinction. Sci 333:430–434CrossRefGoogle Scholar
  130. Ruiz-Martínez VC, Torsvik TH, van Hinsbergen DJJ, Gaina C (2012) Earth at 200 Ma: Global palaeogeography refined from CAMP palaeomagnetic data. Ear Planet Sci Lett 331–332:67–79CrossRefGoogle Scholar
  131. Sahabi M, Aslanian D, Olivet JL (2004) A new starting point for the history of the central Atlantic. Compt Rend Geosci 336:1041–1052CrossRefGoogle Scholar
  132. Schaller MF, Wright JD, Kent DV (2011) Atmospheric pCO2 perturbations associated with the Central Atlantic magmatic province. Sci 331:1404–1409CrossRefGoogle Scholar
  133. Schmidt A, Skeffington RA, Thordarson T, Self S, Forster PM, Rap A, Ridgwell A, Fowler D, Wilson M, Mann GW (2015) Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat Geosci 9:77–82CrossRefGoogle Scholar
  134. Schoene B, Guex J, Bartolini A, Schaltegger U, Blackburn TJ (2010) Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geol 38:387–390CrossRefGoogle Scholar
  135. Schoene B, Samperton KM, Eddy MP, Keller G, Adatte T, Bowring SA, Khadri SFR, Gertsch B (2015) U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Sci 347:9–12CrossRefGoogle Scholar
  136. Sebai A, Féraud G, Bertrand H, Hanes J (1991) 40Ar/39Ar dating and geochemistry of tholeiitic magmatism related to the early opening of the Central Atlantic rift. Ear Planet Sci Lett 104:455–472CrossRefGoogle Scholar
  137. Self S, Thordarson TH, Keszthelyi L (1997) Emplacement of continental flood basalt lava flows. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: Continental, oceanic, and planetary flood volcanism. Am Geophys Uni Geophys Monogr Ser 100:381–410Google Scholar
  138. Self S, Blake S, Sharma K, Widdowson M, Sephton S (2008) Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release. Sci 319:1654–1657CrossRefGoogle Scholar
  139. Shirley DN (1987) Differentiation and compaction in the Palisades sill, New Jersey. J Petrol 28:835–865CrossRefGoogle Scholar
  140. Svensen H, Planke S, Malthe-Sorenssen A, Jamtveit B, Myklebust R, Rasmussen-Eidem T, Rey SS (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nat 429:542–545CrossRefGoogle Scholar
  141. Tanner LH, Lucas SG, Chapman MG (2004) Assessing the record and causes of Late Triassic extinctions. Ear Sci Rev 65:103–139CrossRefGoogle Scholar
  142. Tollo RP, Gottfried D (1992) Petrochemistry of Jurassic basalt from eight cores, Newark basin, New Jersey: Implications for the volcanic petrogenesis of the Newark supergroup. In: Puffer JH, Ragland PC (eds) Eastern North American Mesozoic magmatism. Geol Soc Am Spec Pap, vol 268, pp 233–259CrossRefGoogle Scholar
  143. Torsvik TH, Burke K, Steinberger B, Webb SJ, Ashwal LD (2010) Diamonds sampled by plumes from the core – mantle boundary. Nat 466:352–355CrossRefGoogle Scholar
  144. Verati C, Jourdan F (2014) Modelling effect of sericitization of plagioclase on the K/Ar and Ar/Ar chronometers: implication for dating basaltic rocks and mineral deposits. Geol Soc Lond Spec Publ 378(1):155–174Google Scholar
  145. Verati C, Bertrand H, Féraud G (2005) The farthest record of the Central Atlantic magmatic province into the West Africa craton: Precise 40Ar/39Ar dating and geochemistry of Taoudenni basin intrusives (northern Mali). Ear Planet Sci Lett 235:391–407CrossRefGoogle Scholar
  146. Verati C, Rapaille C, Féraud G, Marzoli A, Bertrand H, Youbi N (2007) 40Ar/39Ar ages and duration of the Central Atlantic Magmatic Province volcanism in Morocco and Portugal and its relation to the Triassic-Jurassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 244:308–325CrossRefGoogle Scholar
  147. Vermeesch P (2012) On the visualization of detrital age distributions. Chem Geol 312–313:190–194CrossRefGoogle Scholar
  148. Von Hillebrandt A, Krystin L, Kurschner WM (2007) A candidate GSSP for the base of the Jurassic in the Northern Calcareous Alps (Kuhjoch section, Karwendel Mountains, Tyrol, Austria). ISJS Newslett 34:2–20Google Scholar
  149. Weems RE, Tanner LH, Lucas SG (2016) Synthesis and revision of the lithostratigraphic groups and formations in the Upper Permian?–Lower Jurassic Newark Supergroup of eastern North America. Stratigraphy 13(2):111–153Google Scholar
  150. Weigand PW, Ragland PC (1970) Geochemistry of Mesozoic dolerite dikes from eastern North America. Contrib Mineral Petrol 29:195–214CrossRefGoogle Scholar
  151. Whalen L, Gazel E, Vidito C, Puffer J, Bizimis M, Henika W, Caddick MJ (2015) Supercontinental inheritance and its influence on supercontinental breakup: The Central Atlantic magmatic province and the breakup of Pangaea. Geochem Geophys Geosyst 16:3532–3355CrossRefGoogle Scholar
  152. Whiteside JH, Olsen PE, Kent DV, Fowell SJ, Et-Touhami M (2007) Synchrony between the Central Atlantic magmatic province and the Triassic–Jurassic mass-extinction event? Palaeogeogr Palaeoclimatol Palaeoecol 244:345–367CrossRefGoogle Scholar
  153. Whiteside JH, Olsen PE, Kent DV, Fowell SJ, Et-Touhami M (2008) Synchrony between the Central Atlantic magmatic province and the Triassic–Jurassic mass-extinction event? Reply to comment of Marzoli et al., 2008. Palaeogeogr Palaeoclimatol Palaeoecol 262:194–198CrossRefGoogle Scholar
  154. Whiteside JH, Olsen PE, Eglinton T, Brookfield ME, Sambrotto RN (2011) Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction. Proc Nat Acad Sci 107:6721–6725CrossRefGoogle Scholar
  155. Wignall PB (2001) Large igneous provinces and mass extinctions. Ear Sci Rev 53:1–33CrossRefGoogle Scholar
  156. Wotzlaw JF, Guex J, Bartolini A, Gallet Y, Krystyn L, McRoberts CA, Taylor D, Schoene B, Schaltegger U (2014) Towards accurate numerical calibration of the Late Triassic: high-precision U–Pb geochronology constraints on the duration of the Rhaetian. Geol 42:571–574CrossRefGoogle Scholar
  157. Youbi N, Martíns LT, Munha JM, Ibouh H, Madeira J, Chayeb A, El Boukhari A (2003) The Late Triassic–Early Jurassic volcanism of Morocco and Portugal in the geodynamic framework of the opening of the Central Atlantic ocean. In: Hames WE, McHone JG, Renne PR, Ruppel C (eds), The Central Atlantic magmatic province: Insights from fragments of Pangaea. Am Geophys Un Geophys Monogr 136:179–207Google Scholar
  158. Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Ear Planet Sci 14:493–571CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Andrea Marzoli
    • 1
    • 2
  • Sara Callegaro
    • 3
  • Jacopo Dal Corso
    • 4
  • Joshua H. F. L. Davies
    • 5
  • Massimo Chiaradia
    • 5
  • Nassrrdine Youbi
    • 6
    • 7
  • Hervé Bertrand
    • 8
  • Laurie Reisberg
    • 9
  • Renaud Merle
    • 10
  • Fred Jourdan
    • 2
  1. 1.Dipartimento di. GeoscienzeUniversità di PadovaPadovaItaly
  2. 2.Department of Applied GeologyCurtin UniversityBentleyAustralia
  3. 3.Centre for Earth Evolution and Dynamics (CEED)University of OsloOsloNorway
  4. 4.Institute for Advanced StudyHanse-Wissenschaftskolleg (HWK)DelmenhorstGermany
  5. 5.Sciences de la Terre et de l’EnvironnementUniversité de GenèveGenèveSwitzerland
  6. 6.Department of Geology, Faculty of Sciences-SemlaliaCadi Ayyad UniversityMarrakeshMorocco
  7. 7.Instituto Dom Luiz, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  8. 8.Laboratoire de Géologie de LyonUniversité Lyon 1 and Ecole Normale Supérieure de Lyon, UMR CNRS 5276LyonFrance
  9. 9.Centre de Recherches Pétrographiques et Géochimiques, UMR 7358 CNRSUniversité de LorraineNancyFrance
  10. 10.Australian National University, Research School of Earth SciencesActonAustralia

Personalised recommendations