Advertisement

Mixed Variable Structural Optimization: Toward an Efficient Hybrid Algorithm

  • Pierre-Jean BarjhouxEmail author
  • Youssef Diouane
  • Stéphane Grihon
  • Dimitri Bettebghor
  • Joseph Morlier
Conference paper

Abstract

Designing a structure implies a selection of optimal concept and sizing, with the aim of minimizing the weight and/or production cost. In general, a structural optimization problem involves both continuous variables (e.g., geometrical variables, …) and categorical ones (e.g., materials, stiffener types, …). Such a problem belongs to the class of mixed-integer nonlinear programming (MINLP) problems. In this paper, we specifically consider a subclass of structural optimization problems where the categorical variables set is non-ordered. To facilitate categorical variables handling, design catalogs are introduced as a generalization of the stacking guide used for composite optimization. From these catalogs, a decomposition of the MINLP problem is proposed, and solved through a branch and bound method. This methodology is tested on a 10 bars truss optimization inspired from an aircraft design problem, consistent with the level of complexity faced in the industry.

Keywords

Mixed optimization Structural optimization Branch and bound Categorical variable Multi-material 

Notes

Acknowledgements

This work is part of the MDA-MDO project of the French Institute of Technology IRT Saint Exupery. We wish to acknowledge the PIA framework (CGI, ANR) and the project industrial members for their support, financial backing and/or own knowledge: Airbus, Airbus Group Innovations, SOGETI High Tech, Altran Technologies, CERFACS. We would like to thank Charlie Vanaret for all his advices, specifically for the branch and bound formulation.

References

  1. 1.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Boston (1989)zbMATHGoogle Scholar
  2. 2.
    Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm intelligence. Scholarpedia 2(9), 1462 (2001)Google Scholar
  4. 4.
    Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7, 1–25 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Lampinen, J.A., Zelinka, I.: Mixed integer-discrete-continuous optimization, by differential evolution, part 1: the optimization method. In: Proceedings of MENDEL 1999, 5th International Mendel Conference on Soft Computing, pp. 71–76 (1999)Google Scholar
  6. 6.
    Guo, C.-X., Hu, J.-S., Ye, B., Cao, Y.-J.: Swarm intelligence for mixed-variable design optimization. J. Zhejiang Univ. Sci. 5(7), 851–860 (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dimopoulos, G.G.: Mixed-variable engineering optimization based on evolutionary and social metaphors. Comput. Methods Appl. Mech. Eng. 196(4–6), 803–817 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Deb, K., Goyal, M.: A flexible optimization procedure for mechanical component design based on genetic adaptive search. J. Mech. Des. 120(2), 162 (1998)CrossRefGoogle Scholar
  9. 9.
    Audet, C., Dennis, J.E.: Pattern search algorithms for mixed variable programming. SIAM J. Optim. 11(3), 573–594 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rakshit, S., Ananthasuresh, G.K.: Simultaneous material selection and geometry design of statically determinate trusses using continuous optimization. Struct. Multidiscip. Optim. 35(1), 55–68 (2008)CrossRefGoogle Scholar
  11. 11.
    Herrera, M., Guglielmetti, A., Xiao, M., Coelho, R.F.: Metamodel-assisted optimization based on multiple kernel regression for mixed variables. Structural and Multidisciplinary Optimization 49(6), 979–991 (2014)CrossRefGoogle Scholar
  12. 12.
    Grihon, S.: Structure sizing optimization capabilities at AIRBUS. In: WCSMO 2012 (2017, submitted)Google Scholar
  13. 13.
    Grihon, S.: PRESTO: a rapid sizing tool for airframe conceptual design studies. In: LMS European Aeronautical Conference (2012)Google Scholar
  14. 14.
    Adams, D.B., Watson, L.T., Gürdal, Z., Anderson-Cook, C.M.: Genetic algorithm optimization and blending of composite laminates by locally reducing laminate thickness. Adv. Eng. Softw. 35(1), 35–43 (2004)CrossRefGoogle Scholar
  15. 15.
    Carpentier, A., Michel, L., Grihon, S., Barrau, J.-J.: Optimization methodology of composite panels. In: Proceedings of the 12th European Conference on Composite Materials, ECCM 2012, pp. 1–8 (2006)Google Scholar
  16. 16.
    Carpentier, A., Barrau, J.-J., Michel, L., Grihon, S.: Buckling optimisation of composite panels via lay-up tables. In: III European Conference on Computational Mechanics, pp. 226–226. Springer, Dordrecht (2006)Google Scholar
  17. 17.
    Merval, A.: L’Optimisation Multiniveaux D’une Structure. PhD thesis (2008)Google Scholar
  18. 18.
    Merval, A., Samuelides, M., Grihon, S.: Multilevel optimization with local mass minimization. In: 2nd European Conference for Aerospace Sciences - EUCASS 2007 (2007)Google Scholar
  19. 19.
    Samuelides, M., Bettebghor, D., Grihon, S., Merval, A., Morlier, J.: Modèles réduits en optimisation multiniveau de structures aéronautiques. 9e Colloque national en calcul des structures (2009)Google Scholar
  20. 20.
    Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. Comput. J. 8(3), 250–255 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tseng, C.H., Wang, L.W., Ling, S.F.: enhancing branch-and-bound method for structural optimization. J. Struct. Eng. 121(5), 831–837 (1995)CrossRefGoogle Scholar
  23. 23.
    Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12(2), 555–573 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Stegmann, J., Lund, E.: Discrete material optimization of general composite shell structures. Int. J. Numer. Meth. Eng. 62(14), 2009–2027 (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Pierre-Jean Barjhoux
    • 1
    Email author
  • Youssef Diouane
    • 2
  • Stéphane Grihon
    • 3
  • Dimitri Bettebghor
    • 4
  • Joseph Morlier
    • 5
  1. 1.IRT Saint ExuperyToulouseFrance
  2. 2.ISAE-SUPAEROToulouseFrance
  3. 3.AIRBUSToulouseFrance
  4. 4.ONERAChâtillonFrance
  5. 5.Université de Toulouse, Institut Clément Ader (ICA), CNRS-ISAE SUPAERO-INSA-Mines Albi-UPSToulouseFrance

Personalised recommendations