Advertisement

Semantic Resource Management of Federated IoT Testbeds

  • Marios Avgeris
  • Nikos Kalatzis
  • Dimitrios Dechouniotis
  • Ioanna Roussaki
  • Symeon Papavassiliou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10517)

Abstract

Testbeds and experimental network facilities accelerate the expansion of disruptive Internet services and support their evolution. The integration of IoT technologies in the context of Unmanned Vehicles (UxVs) and their deployment in federated, real–world testbeds introduce various challenging research issues. This paper presents the Semantic Aggregate Manager (SAM) that exploits semantic technologies for modeling and managing resources of federated IoT Testbeds. SAM introduces new semantics–based features tailored to the needs of IoT enabled UxVs, but on the same time allows the compatibility with existing legacy, “de facto” standardised protocols, currently utilized by multiple federated testbed management systems. The proposed framework is currently being deployed in order to be evaluated in real–world testbeds across several sites in Europe.

Keywords

IoT Semantics Unmanned vehicles Interoperability Federated testbeds 

Notes

Acknowledgments

This work has been partially supported by the European Commission, Horizon 2020 Framework Programme for research and innovation under grant agreement no. 645220.

References

  1. 1.
    Stavropoulos, D., Dadoukis, A., Rakotoarivelo, T., Ott, M., Korakis, T., Tassiulas, L.: Design, architecture and implementation of a resource discovery, reservation and provisioning framework for testbeds. In: 2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pp. 48–53. IEEE (2015)Google Scholar
  2. 2.
    Peterson, L., Ricci, R., Falk, A., Chase, J.: Slice-based federation architecture. Ad Hoc Des. Doc. 2008, 1 (2010)Google Scholar
  3. 3.
    Berman, M., Chase, J.S., Landweber, L., Nakao, A., Ott, M., Raychaudhuri, D., Seskar, I.: GENI: a federated testbed for innovative network experiments. Comput. Netw. 61, 5–23 (2014)CrossRefGoogle Scholar
  4. 4.
    Gavras, A., Karila, A., Fdida, S., May, M., Potts, M.: Future internet research and experimentation: the FIRE initiative. ACM SIGCOMM Comput. Commun. Rev. 37(3), 89–92 (2007)CrossRefGoogle Scholar
  5. 5.
    Faber, T., Ricci, R.: Resource description in GENI: RSpec model. In: Presentation Given at the Second GENI Engineering Conference, March 2008Google Scholar
  6. 6.
    Vermeulen, B., Van de Meerssche, W., Walcarius, T.: jFed toolkit, Fed4Fire, Federation. In: GENI Engineering Conference, vol. 19 (2014)Google Scholar
  7. 7.
    Brickley, D., Guha, R.V.: RDF vocabulary description language 1.0: RDF schema (2004)Google Scholar
  8. 8.
    Willner, A., Magedanz, T.: A future Internet resource management architecture. In: 2014 26th International Teletraffic Congress (ITC), pp. 1–4. IEEEGoogle Scholar
  9. 9.
    Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    H2020 RAWFIE project, Road-, Air- and Water- based Future Internet Experimentation. http://www.rawfie.eu/
  11. 11.
    Schumann, B., Scanlan, J., Fangohr, H., Ferraro, M.: A generic unifying ontology for civil unmanned aerial vehicle missions. In: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, p. 5504 (2012)Google Scholar
  12. 12.
    Schlenoff, C., Balakirsky, S., Uschold, M., Provine, R., Smith, S.: Using ontologies to aid navigation planning in autonomous vehicles. Knowl. Eng. Rev. 18(03), 243–255 (2003)CrossRefGoogle Scholar
  13. 13.
    Provine, R., Schlenoff, C., Balakirsky, S., Smith, S., Uschold, M.: Ontology-based methods for enhancing autonomous vehicle path planning. Robot. Auton. Syst. 49(1), 123–133 (2004)CrossRefGoogle Scholar
  14. 14.
    Patron, P., Miguelanez, E., Cartwright, J., Petillot, Y.R.: Semantic knowledge-based representation for improving situation awareness in service oriented agents of autonomous underwater vehicles. In: OCEANS 2008, pp. 1–9. IEEE (2008)Google Scholar
  15. 15.
    Li, X., Bilbao, S., Martín-Wanton, T., Bastos, J., Rodriguez, J.: SWARMs ontology: a common information model for the cooperation of underwater robots. Sensors 17(3), 569 (2017)CrossRefGoogle Scholar
  16. 16.
    van der Ham, J., Dijkstra, F., Lapacz, R., Zurawski, J.: Network markup language base schema version 1. In: Grid Forum Documents (2013)Google Scholar
  17. 17.
    van der Ham, J., Steger, J., Laki, S., Kryftis, Y., Maglaris, V., de Laat, C.: The NOVI information models. Fut. Gener. Comput. Syst. 42, 64–73 (2015)CrossRefGoogle Scholar
  18. 18.
    Xin, Y., Baldin, I., Chase, J., Ogan, K.: Leveraging semantic web technologies for managing resources in a multi-domain infrastructure-as-a-service environment. arXiv preprint arXiv:1403.0949 (2014)
  19. 19.
    Willner, A., Papagianni, C., Giatili, M., Grosso, P., Morsey, M., Al-Hazmi, Y., Baldin, I.: The open-multinet upper ontology towards the semantic-based management of federated infrastructures. EAI Endorsed Trans. Scalable Inf. Syst. 2(7), 1–10 (2015)Google Scholar
  20. 20.
    Willner, A., Loughnane, R., Magedanz, T.: Federated infrastructure discovery and description language. In: 2015 IEEE International Conference on Cloud Engineering (IC2E), pp. 465–471. IEEEGoogle Scholar
  21. 21.
    Morsey, M., Willner, A., Loughnane, R., Giatili, M., Papagianni, C., Baldin, I., Al-Hazmi, Y.: DBcloud: semantic dataset for the cloud. In: 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 207–212. IEEE (2016)Google Scholar
  22. 22.
    Lieberman, J., Signh, R., Goad, C.: W3C Geospatial Vocabulary (2007). https://www.w3.org/2005/Incubator/geo/XGR-geo-20071023/
  23. 23.
    Compton, M., Barnaghi, P., Bermudez, L., GarciA-Castro, R., Corcho, O., Cox, S., Huang, V.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semant. Sci. Serv. Agents World Wide Web 17, 25–32 (2012)CrossRefGoogle Scholar
  24. 24.
    Lefort, L.: Ontology for quantity kinds and units: units and quantities definitions. W3 Semantic Sensor Network Incubator Activity (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marios Avgeris
    • 1
  • Nikos Kalatzis
    • 1
  • Dimitrios Dechouniotis
    • 1
  • Ioanna Roussaki
    • 1
  • Symeon Papavassiliou
    • 1
  1. 1.School of Electrical and Computing EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations